
The Digital Twin in the Manufacturing Ecosystem of the Future 

James Moyne*, Efe Balta, Ilya Kovalenko, Yassine Qamsane, Kira Barton 
 Mechanical Engineering Department 

 University of Michigan 

 Ann Arbor, MI 

 *moyne@umich.edu 

ABSTRACT 

A greenfield approach to manufacturing provides an avenue for 

realizing a vision for the manufacturing ecosystem of the future. It 

is proposed that manufacturing will evolve to a more amorphous 

and ever-changed ecosystem integrated horizontally and vertically.  

Rigid structures will be abandoned in favor of a flexible services-

based model where a bidding process with objective and penalty 

functions is used to quantitatively evaluate services for 

interchangeability and ecosystem reconfigurability. The digital 

twin (DT) will play key roles in service emulation, pre-validation 

and prediction, and service and ecosystem maintenance. 

Technology challenges to realizing this vision include developing 

methods for ecosystem auto reconfiguration, and capabilities for 

DT to provide prediction quality and sensitivity information, and 

be self-creating, validating and maintaining. Implementation / 

infrastructure challenges include overcoming data quality issues, 

auto-incorporation of subject matter expertise, addressing data 

partitioning and intellectual property security, and addressing roles 

and responsibilities in complex operational, legal and safety 

environments. 

KEYWORDS 

Smart Manufacturing, Digital Twin, Production as a Service 

1  Introduction 

Manufacturing systems continue to evolve, adopting tenets of smart 

manufacturing (SM) / Industry 4.0 including digital twin (DT) to 

improve throughput and quality while reducing cost [1]. However, 

the evolution is hindered to a large extent by existing infrastructure, 

which serves as a resistance to change as well as a mechanism to 

direct the SM evolution in directions that may not be optimal. These 

infrastructure barriers include installed physical components such 

as aging equipment, programmable logic controllers (PLCs) and 

software system, but also include less tangible elements such as 

standards, definitions, education, social influences and business 

practices. As an example, the ISA-95 standard has helped facilitate 

development and interoperability in modern manufacturing 

automation by defining automation levels; however, artificial 

partitioning created unnatural barriers between levels, and ISA 

definitions have resulted in limiting the scope of manufacturing 

system discussion (e.g., to the “four walls”) [2]. 

Outlining an ideal SM vision for the manufacturing ecosystem of 

the future requires implementing a process that is not encumbered 

by the installed base and the resistance to change; a greenfield 

vision process meets these requirements. The goal of this paper is 

to outline aspects of an ideal SM greenfield vision, focusing on the 

role of DT. Specifically, components of a vision of the future SM 

ecosystem will be outlined. The DT SM tenet will then be described 

in more detail including thoughts on how it will be realized and 

maintained, the role it will play in the manufacturing ecosystem, 

and key challenges that must be overcome to fully realize the 

vision. 

2  Background: Digital Twin 

 “A digital twin refers to a digital replica of physical assets, 

processes and systems that can be used for various purposes” [6]. 

Generally speaking, DT combines modeling (e.g., simulation or 

emulation) technology with other analytics to deliver capabilities 

that allow us to better understand aspects of our current 

manufacturing operations (e.g., diagnostics) or to determine aspects 

of our manufacturing environment in the future (e.g., predictive 

maintenance). In today’s “smart” factory, DT can play a role at all 

ISA-95 levels, or even provide capabilities across multiple levels 

[7]. There is a significant literature base devoted to the various DT 

types such as augmented/virtual reality, predictive maintenance, 

and model-based process control. Other researchers have focused 

on the organization and collaboration of DTs across the ISA-95 

space, while industry efforts have focused on defining the SM and 

DT visions and roadmaps [8]. A consistent theme in these visions 

is SM movement from a purely reactive to a more predictive mode 

of factory operations, with DTs tasked to combine models and 

predictive analytics to predict future behavior. 

3 Future Manufacturing Ecosystem: A Vision 

In this paper, it is proposed that manufacturing will evolve to a 

more amorphous and ever-changed ecosystem integrated 

horizontally (from raw material through consumer environment) 

and vertically (from sensor through enterprise). The rigid structure 

associated with the ISA-95 levels will be abandoned gradually in 

favor of a more service-based model. A service in this vision is 

simply a specified capability; the capability could be anything that 

contributes in some way to the manufacturing ecosystem. Thus the 
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service could include a component of physical production, analysis, 

control, optimization or reconfiguration for some portion of the 

ecosystem. A service offering is communicated as a quantified 

promise of a capability that could include production, analysis, 

optimization, or cost reduction, as well as any cost that could 

include cost of the service, risks, or confidence levels. Since 

everything is quantified there is no ambiguity or subjectivity in 

choosing an optimal service. Manufacturing service providers bid 

on providing capabilities (not necessarily aligned with an ISA-95 

level) to achieve or better achieve the production financial goal. As 

shown in Figure 1, these services in-turn may be comprised of 

lower level (e.g., micro) services that utilize the same bidding 

process in the higher-level service providers financial system. The 

services will generally not be provided in-house, but by 3rd party 

service providers, and could be provided to multiple production 

companies that could be competitors. The services will extend 

beyond the “four walls”; e.g., they could include a predictor of 

future product demand or an advertising service that optimizes ad 

targeting based on the product quality distribution. Note that the 

bidding service is irrespective of the ecosystem service 

organization approach (e.g., fully-distributed vs. centralized). For 

example, any conflicting goals that might arise in a highly 

decentralized ecosystem could be identified and resolved before 

bidding or mitigated after bidding by a mitigation service. 

 
Figure 1: Future Manufacturing Ecosystem Services-based 

Operational Model (circles are instances of a service) 

In executing the bidding process, the potential service consumer 

identifies and maintains both an objective/cost function and a 

penalty function. The objective/cost function quantifies and 

prioritizes desired benefits such as throughput and quality, and 

costs such as materials, safety, and delay in delivering the service, 

from the perspective of the service consumer (e.g., one consumer 

may emphasize quality while another emphasizes low cost and 

safety). The penalty function identifies costs to the service provider 

that would be incurred if promises made toward the 

objective/function are not kept.  

There are three common bidding scenario types, which are 

illustrated in Figure 2; the scenario invoked depends on the 

objectives of the (potential) service user and provider:  

 Optimization service interchangeability bidding scenario: In 

this scenario the bidding process would emanate from a parent 

service looking for a capability that is defined and quantified 

with an objective/cost function and a penalty function.  For 

example, a product distribution service might be searching for 

the “best” lower-level delivery service. Bidding services 

would promise to deliver capabilities with respect to the 

objective/cost function as well as pay penalties per the penalty 

function. The result of the bidding / rebidding process is an 

interchange of services for continuous optimization. In most 

ecosystems this scenario type is the most common. 

 Innovation service interoperability bidding scenario: In this 

scenario the bidding process would emanate from a service 

that may or may not (yet) be in the ecosystem. It recognizes 

that it could provide a new capability within the existing 

ecosystem structure. For example, a quality binning service 

might be able to combine customer quality requirement data 

with production quality data and deliver an optimized product 

re-distribution plan. As with all bidding processes, 

objective/cost and penalty functions must be used in the 

communication for service evaluation by the consuming 

parent service. The result of the bidding is potentially 

providing a new capability that interoperates with the existing 

ecosystem to improve objectives. 

 Reconfiguration bidding scenario: In this scenario the bidding 

process could emanate from a service that is requesting a 

reconfiguration of the ecosystem (rather than simple 

replacement of a service or addition of a capability within the 

existing ecosystem) in order to deliver a capability. As an 

example, a service might offer a new production approach that 

changes from supply-based to demand-based requiring 

changes to production as well as up and downstream supply 

chain service. The bidding process here would be much more 

complex as it is requiring reevaluation of the ecosystem 

structure, with the objective/cost and penalty functions being 

difficult to conceive and pre-evaluate. 

Supporting a highly flexible and dynamic service environment 

requires that the manufacturing ecosystem be highly flexible and 

adaptable so as to quickly accommodate new and improved 

services and service configurations for improved profit. It also 

requires that (along with the aforementioned objective/cost and 

penalty functions) each service be delivered with a clear indication 

of the capability it provides as well as the authority level it requires 

within the ecosystem (decision making, data access, etc.) to deliver 

the promised capability. Note that, depending on ecosystem 

restrictions, the authority level that is willing to be granted to a 

service might be part of the bidding negotiation. 

Utilizing this capability and authority level information, the 

manufacturing ecosystem develops and maintains an operation 

model, as shown in Figure 1, that links these capabilities to 

optimize profit objectives. Note that this operation model spans the 

entire ecosystem, including production, design, marketing, product 

maintenance and upgrade, human resources, supplier base and 

customer base (marketing, advertising, etc.). In order to deliver a 

competitive solution, the ecosystem must be continually 

maintained, and be easily adaptable, i.e., able to accept and take 

advantage of bids from services that do not fit the current 

configuration (e.g., innovation and reconfiguration scenarios as  



The Digital Twin in the Manufacturing Ecosystem of the Future CPS-IoT Week, March, 2019, Montreal, Quebec, Canada 

 

 

 
Figure 2: Future Manufacturing Ecosystem Bidding 

Scenarios; (a) interchange, (b) innovation interoperation, and 

(c) reconfiguration 

noted above), determine cost of change, net benefit, requirements 

for reconfiguration, etc.). 

In the envisioned environment, profit and competitiveness will be 

defined less by product innovation and cutting costs arising from 

the human element, and more on (1) developing services that have 

the ability to get more benefit out of data, and (2) infrastructures 

that can better (more completely and more quickly) incorporate and 

maintain these services in the ecosystem. In addressing aspects of 

these needs, other industries will flourish, and new industries will 

emerge to provide capabilities such as data commissioning and 

management, prediction verification, and reconfiguration 

simulation and verification. DT technology will play a key role in 

providing many of these capabilities; however, challenges must be 

overcome. The role of DT and key challenges are discussed in 

sections 4 and 5 respectively. 

4 Digital Twin Technology in the Manufacturing 

Ecosystem of the Future 

DT technology will play a key role in the manufacturing ecosystem 

of the future. Specifically, DT will combine modelling and 

prediction technology to predict behavior of various aspects of the 

manufacturing ecosystem. This will become increasingly important 

as manufacturing continues to evolve to a more predictive mode of 

operation, but also as the environment becomes more dynamic, and 

requires more flexibility and adaptability. Thus, in addition to the 

task of predicting aspects of the manufacturing environment, DT 

will be used to emulate, predict and pre-validate new services and 

new service configurations in the ecosystem as part of the 

aforementioned bidding process, with the goal being unambiguous 

pre-evaluation of service capabilities, seamless auto service 

interchangeability, and auto-reconfigurability of the ecosystem 

operational model.  

This expanded role of DTs places four important requirements on 

DTs that are not usually associated with current DT technology. 

The first requirement is that DTs will have to be delivered as part 

of a service so that the impact of the service can be pre-determined 

as part of the pre-evaluation and validation in the ecosystem. This 

requirement also places requirements on minimum DT capabilities 

and quality (see below). The second requirement is that DTs will 

need to provide prediction quality and sensitivity analysis 

associated with their predictions. Determining the impact of a 

service in a complex ecosystem requires a complete understanding 

of the service behavior including the boundaries of performance 

and the susceptibility of performance to variations in the 

performance of other services. For example, a high-performance 

service that is highly susceptible to variation in other services might 

be abandoned in favor of a lower performing service that leads to 

lower variability of key performance indicators. The third 

requirement is that the DT must convey a concise understanding of 

its emulation and prediction capabilities in terms of accuracy, 

horizon for prediction, etc., as these capabilities are used to pre-

evaluate and pre-validate the service capability in the ecosystem. 

The forth requirement for future DTs is that they will have to be 

self-creating, self-validating and self-maintaining. For the bidding 

system to be effective, any promised capabilities of both the 

services and DTs must be trusted. This requires that any capability 

for human bias be eliminated. While mechanisms such as standards 

compliance and 3rd party verification would help, ultimately 

mechanisms that fully automate the DT development and 

maintenance process would be needed in highly complex 

ecosystems and would represent a competitive advantage in terms 

of accuracy and performance. 

5 Discussion: Key Challenges to Realizing the 

Future Manufacturing Ecosystem  

5.1 Technical Challenges 

As noted in Section 4, the ecosystem service automated 

interchangeability and reconfigurability requires that the DT must 

provide prediction quality sensitivity analysis, be able to report its 

accuracy with respect to the service it is emulating, and be self-

creating, self-validating and self-maintaining. Each of these 

requirements is a technology challenge. While some DT 

technologies today can convey a concept of an accuracy 

distribution for a prediction horizon [9], the general capability is 

not well-developed or consistent, especially with respect to 

matching the accuracy conveyance to objective/cost and penalty 

functions. Most DTs today are created off-line using processes that 

are largely manual requiring significant human interaction, and 

generally not consistent or standardized. Validation and 

maintenance of DTs is an even more ad hoc process. 

Ecosystem auto-reconfiguration is another challenge. While 

research efforts exist for auto-reconfiguration in response to events 

such as anomalies, work in reconfiguration in response to changing 

services is just beginning with efforts focused on realizing the 

bidding process [10, 11]. 
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5.2 Implementation / Infrastructure Challenges  

Data quality has been and will continue to be a limiting factor in 

DT prediction systems, with the primary quality issue being 

insufficient (historical) length or breadth of data. This insufficiency 

is not a result of data storage limitations, but rather the dynamics 

and context richness of manufacturing environments, which 

oftentimes convolutes the data to the extent that quality prediction 

models cannot be realized. Prediction systems will continue to have 

issues with quality of prediction, and therefore must convey this 

quality information with any prediction.  

The incorporation of subject-matter-expertise (SME) is currently a 

key component of many of today’s DT systems as it reduces the 

impact of poor data quality (specifically in the form of insufficient 

data), by allowing us to make better sense out of the data we have, 

thereby improving the signal-to-noise ratio for the development and 

maintenance of DT systems. In many respects however, SME can 

just be thought of as the incorporation and interpretation of larger 

quantities of relevant data into the analysis. For example, an SME 

might use her knowledge of physics obtained from years of study 

and practice to partition data from a machine into four data sets 

associated with four different types of failures, even though there 

is not enough data to determine this partitioning (to a defined 

standard of quality) using data science. From this perspective, an 

argument can be made that the human will serve as a conduit for 

understanding which new information sources should be 

incorporated to provide improvements in DT capabilities, with the 

boundaries of the data science space constantly expanding through 

SME pioneering. Automated DT creation and maintenance then 

must require a mechanism for understanding when SME might be 

needed, and accommodating SME in an automated fashion, 

whether solicited or unsolicited. It also must be considered that the 

SME brings creativity to the solution space and it is not clear that 

creativity can be achieved solely through the application of math 

sciences. Thus, the SME will continue to provide benefit 

throughout the manufacturing ecosystem as long as (1) there are 

new information sources to incorporate and (2) creativity is 

considered to be a unique human contribution. 

The new paradigm of manufacturing is characterized by increased 

complexity, analysis, integration, distribution, data sharing and 

collaboration. While this provides opportunities for improved 

productivity and quality and reduced cost, it also raises issues 

associated with security, safety and responsibility. The need for 

data sharing among unaffiliated parties leads to opportunities for 

data and IP “leaks” that could be intentional or unintentional. Data 

and IP security has quickly risen to the top as the primary 

impediment to the implementation of many SM tenets, and this 

problem will only be exasperated in the manufacturing ecosystem 

of the future. The highly heterogeneous and dynamic service 

environment leads to a much more complex safety environment 

from both a capabilities and responsibilities perspective. Finally, 

the resolution of responsibility in the case of unexpected issues also 

is much more complex, in much the same way as responsibility is 

determined in an autonomous vehicle accident.  Addressing each of 

these issues will undoubtedly involve standards, software 

infrastructures, and potentially legal statutes. However, it is argued 

that there are also research opportunities, e.g., for application 

specific data transformation to convey information while protecting 

IP or delegating analysis to edge devices in services [8,9]. 

6 Looking ahead 

New paradigms for manufacturing will be driven by competition 

and cost pressures, and accelerated by the tenets of smart 

manufacturing, the increasing benefits of rapid ramp-up, and the 

increasing pervasiveness of technologies that support 

interoperability and reconfigurability. A greenfield approach to 

determining a vision for the manufacturing ecosystem allows us to 

explore optimality without impediments of existing infrastructure, 

however existing infrastructure will likely significantly impact the 

evolutionary path to this vision. The flexible services-based model 

bidding process is the cornerstone of the vision and leverages many 

of the tenets of SM.  The process enables optimization through 

service interchangeability and ecosystem reconfiguration, and 

relies heavily on the DT to define, validate and evaluate objective 

and penalty functions used to quantitatively and comparatively 

evaluate services for interchangeability and ecosystem 

reconfigurability. Challenges to the vision will include traditional 

research challenges such as determining and improving prediction 

quality, but also new challenges such as data partitioning and IP 

security; addressing these latter challenges represents a new and 

rapidly growing area for research. 
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