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ABSTRACT
Traditional fault detection and isolation (FDI) methods analyze a residual signal to detect and iso-
late sensor faults. The residual signal is the difference between the sensor measurements and the
estimated outputs of the system based on an observer. The traditional residual-based FDI methods,
however, have some limitations. First, they require that the observer has reached its steady state. In
addition, residual-basedmethodsmaynot detect some sensor faults, such as faults on critical sensors
that result in anunobservable system. Furthermore, the systemmaybe in jeopardy if actions required
for mitigating the impact of the faulty sensors are not taken before the faulty sensors are identified.
The contribution of this paper is to propose three new methods to address these limitations. Faults
that occur during the observers’ transient state can be detected by analysing the convergence rate
of the estimation error. Open-loop observers, which do not rely on sensor information, are used to
detect faults on critical sensors. By switching among different observers, we can potentially miti-
gate the impact of the faulty sensor during the FDI process. These three methods are systematically
integratedwith a previously developed residual-basedmethod toprovide an improved FDI andmiti-
gation capability framework. The overall approach is validatedmathematically, and the effectiveness
of the overall approach is demonstrated through simulation on a five-state suspension system.
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1. Introduction

Sensors are considered to be the weak link in a system,
especially when they transmit data through a vulnera-
ble public network (e.g. the Internet) (Cardenas, Amin, &
Sastry, 2008; Silva, Saxena, Balaban, & Goebel, 2012). A
sensor fault in a physical system can be a major problem
that may degrade the system performance, and even put
the system in jeopardy in severe cases. The International
Federation of Automatic Control (IFAC) SAFEPROCESS
Technical Committee defines a fault as an unpermitted
deviation of at least one characteristic property or param-
eter of the system from the acceptable/usual/standard
condition (Isermann, 1997; Schrick, 1997).

Fault detection and isolation (FDI) and fault mitigation
mechanisms are crucial for protecting a system that is sus-
ceptible to sensor faults. Fault detection makes a binary
decision onwhether a fault has occurred or not. Fault iso-
lation determines the location, and assesses the extent
of the fault (Willsky, 1976). Fault mitigation reduces the
effect of the fault (Dubey et al., 2007). Fault mitigation
differs from Fault Tolerant Control, which aims at con-
trolling the faulty system in the presence of the fault. In
this paper, we propose three new methods to improve

CONTACT Zheng Wang zhengwa@umich.edu

the performance of the traditional sensor fault detection,
isolation and mitigation method.

1.1. Literature review

A significant amount of research has been carried out
to detect and isolate sensor faults using observer-based
methods due to their cost efficiency. The most common
approach is to calculate residuals based on the difference
between the measured outputs of the system and the
estimatedoutputs of theobserver, and compare residuals
with certain thresholds to detect a sensor fault (Hwang,
Kim, Kim, & Seah, 2010). For fault detection, a single
observer or Kalman filter is sufficient (Clark, 1978). Fault
isolation is usually addressed with a bank of observers,
called a dedicated observer scheme (DOS) (Frank and
Ding, 1997). In the DOS proposed by Clark (1978), each
observer uses only one sensor for state estimation based
on the assumption that the system is observable with any
one of the sensors. Similarly, Bouibed, Seddiki, Guelton,
and Akdag (2014) design multiple robust sliding mode
observers with different subsets of sensor measurements
and actuator inputs to generate residuals for both sensor

© 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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and actuator faults detection. Each slidingmodeobserver
excluding a particular sensor or actuator is designed so
that the residual generated by this observer is sensitive to
a fault on this sensor or actuator, but insensitive to faults
on other sensors and actuators.

In addition to observers designed using different
inputs and outputs of the physical system, some DOSs
consist of unknown input observers. Chadli, Akhenak,
Maquin, and Ragot (2008) use a sliding mode observer
to detect and isolate faults for nonlinear systems rep-
resented by multiple local linear models. The sliding
mode observer is a linear combination of several local
unknown input observers which can isolate the unknown
disturbances to achieve robust FDI. Instead of isolat-
ing unknown disturbances, Methnani, Lafont, Gauthier,
Damak, and Toumi (2013) consider a single additive fault
as anunknown input, and attempt to reconstruct the fault
with a bank of unknown input observers for each sensor
and actuator.

An observer-based method can also be integrated
with other methods for FDI. Rios, Edwards, Davila, and
Fridman (2015) propose an approach that combines
a high-order-sliding-mode multiple-observer technique
and amultiple-model technique. This combinedmethod-
ology has the advantages of both slidingmode observers
and multiple models. The equivalent output injection of
a slidingmode observer, which is a function of estimation
error, can be used as a residual to detect faults in the sys-
tem. Multiple models can be designed based on different
fault scenarios to isolate faults.

Note that all of themethodsmentioned above assume
that the observers have reached their steady state so that
the effect of the uncertain initial condition on a residual
has died out. Otherwise, the methods may generate false
alarms or missed alarms.

Some types of sensor faults may not be detected by
traditional fault detectionmethods based on closed-loop
observers. These include sensor faults caused by certain
types of cyber attacks on a networked control system. Liu,
Ning, and Reiter (2011) propose a cyber attack that injects
false data in the sensormeasurements and show that this
attack cannot be detected by a static residual-based fault
detector. To detect this type of sensor fault with a static
residual-based fault detector, Bobba et al. (2010) propose
to protect the subset of sensor measurements which are
needed toensure the systemobservability.MoandSinop-
oli (2010) and Mo and Sinopoli (2015) propose another
kind of cyber attack which can bypass not only a static
fault detector, but also one utilizing the systemdynamics,
such as a χ2 fault detector. Theorem 2 in Mo and Sinop-
oli (2010) indicates that the system is notdetectablewhen
removing the faulty sensor, and as a result, the attacker
could impose arbitrary large errors between the faulty

sensormeasurements and the actual systemoutputs. The
faulty sensors inMoandSinopoli (2010) are a subsetof the
critical sensors that are indispensable for system observ-
ability. Instead of closed-loop observers, a method using
open-loop observers is needed to detect critical sensor
faults.

After a fault is detected and isolated, a control scheme
is reconfigured (Edwards and Tan, 2006; Choy and
Weyer, 2008). Although the diagnosis of a fault can lead
to appropriate maintenance, the physical systemmay be
in jeopardy during the diagnosis time. A timely mitiga-
tion technique during the FDI process may help maintain
acceptable performance of the physical system. To the
best of our knowledge, fault mitigation techniques that
can be applied during the FDI process have not been
developed for sensor faults (Lefebvre, 2014).

Based on our literature review, three research gaps are
identified:

(1) how to detect a sensor fault during the observers’
transient state;

(2) how to detect a sensor fault that can bypass a
closed-loop observer-based method; and

(3) how to potentially mitigate the impact of a sensor
fault during the FDI process.

1.2. Contribution

Given a linear time-invariant discrete-time system with
multiple sensors, assuming only one sensor is faulty at a
time, the general goals of this research are to

• determine the occurrence of a sensor fault;
• identify the faulty sensor and estimate the fault signal;

and
• mitigate the impact of the sensor fault.

With respect to the previously mentioned research
gaps, our contribution is to propose three new methods
that respectively

(1) enable sensor fault detection and reduce false
alarms during the observers’ transient state;

(2) detect faults on critical sensors; and
(3) potentially mitigate the impact of the faulty sensor

during the FDI process.

These three methods are then systematically integrated
with a previously developed residual-based method to
create a new FDI and mitigation framework. The first two
contributions are shown in Figure 1.

The rest of the paper is organized as follows. In
Section 2, anoverviewof problemstatement and solution
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72 Z. WANG ET AL.

Figure 1. The first two contributions positioned in the space of
critical vs. non-critical sensors, and observers’ transient vs. steady
state.

is provided. In Section 3, the mathematical description of
the system is given. In Section 4, we introduce three new
methods to address the research gaps, and the proposed
methods are integrated with a previously developed
method. In Section 5, an illustrative example validates
the proposed algorithm. Conclusion and future work are
given in Section 6.

2. Problem/solution overview

Given a linear time-invariant discrete-time system with
multiple sensors, multiple observers, a state feedback
controller, a residual-based fault detector, and the follow-
ing assumption.

Assumption 2.1: Only one sensor is faulty at a time.

The specific goals of this paper are to

• propose a non-residual based method for sensor fault
detection during the observers’ transient state (Contri-
bution 1);

• propose a method for critical sensor FDI (Contribu-
tion 2);

• propose a method to potentially mitigate the impact
of the faulty sensor during the FDI process (Contribu-
tion 3); and

• systematically integrate the three new methods with
a previously developed residual-basedmethod for FDI
and mitigation.

Based on the one faulty sensor assumption, the sen-
sors can be divided into two sets. In one set, the sensors
are indispensable for systemobservability. Theyare called
critical sensors in this paper. In another set, the system
is still observable with one sensor removed. These sen-
sors are called non-critical sensors. Faults on non-critical
sensors can be detected and isolated using a closed-loop

observer which is designed excluding the faulty sensor.
Since some sensor faults caused by certain types of cyber
attacks (Mo and Sinopoli, 2010) on critical sensors are
disguised as sensor noise, we use a bank of open-loop
observers, which are artificial copies of the system fed
with the same input signal (Bemporad, 2010). Two meth-
ods are running in parallel to determine which sensor is
faulty. One method is based on closed-loop observers,
while the other is based on open-loop observers.

To detect faults on non-critical sensors, we design
one closed-loop observer with all of the sensor measure-
ments, andmultiple closed-loop observers eachwith one
non-critical sensor excluded. Each observer is compared
with all other observers, and the difference of estimated
states between two observers is decoupled to calculate
the estimation errors of these two observers. Thus, each
observer has multiple calculated estimation errors. These
calculated estimation errors are combined to determine
the overall estimation error of the observer. The conver-
gence ratio (CR) of the estimation error of an observer
should be related to the designed state matrix of the
observer, and not affected by the uncertain initial condi-
tion. But a sensor fault or a disturbance can change the
CRof the estimation error. Based on this property, wepro-
pose theCRmethod for fault detection to reduce the false
alarms during the observers’ transient state. Bias analysis
based on the calculated estimation errors is developed to
distinguish a sensor fault from a disturbance. In the ideal
case, the biases calculated based on the estimation errors
of all observers should be the same when the system is
under disturbance, but should be different under sen-
sor fault. With bounded system noise, the bound of the
difference between the calculated bias and the actual dis-
turbance signal can be determined. Therefore, a thresh-
old can be selected and compared with the difference
between any two calculated biases. The threshold is spe-
cific for eachpair of biases. If any onepair of themexceeds
their threshold, the system is under sensor fault. Other-
wise, the system is under disturbance.

To detect and isolate faults on critical sensors, we
design multiple open-loop observers (MOLO), and ana-
lyze the residuals formed based on the difference
between the measured outputs of the system and the
estimated outputs. This method is only applicable to
an open-loop stable or marginally stable system. If the
system is open-loop unstable, the estimation error of
an open-loop observer could diverge exponentially. To
increase the estimation accuracy, we periodically update
the states of multiple open-loop observers with the
state estimated by the closed-loop observer using all
of the sensor measurements when no fault is detected.
There is a trade-off between estimation performance and
the ability to detect a sensor fault. Therefore, we divide
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the multiple open-loop observers into several groups.
The observers within the same group are updated with
the same update frequency. To mitigate the impact of
noise, the update time steps of the observers in the same
group are distributed evenly within one update period,
and the residuals generated by the observers within the
same group are averaged. The averaged residual is com-
pared with a threshold, which is related to the known
upper bound of noise and the update frequency. If the
residual is larger than the threshold, then an alarm is trig-
gered and the states of the open-loop observers of that
group are not updated with the estimated state of the
closed-loop observer until the alarm is cleared. Logic
is provided to determine whether the system is under
normal operation or under sensor fault based on which
groups of open-loop observers trigger alarms. Then the
residuals of the groups that trigger alarms are analysed
to determine which sensor is faulty.

For fault mitigation, we also need to consider two
cases: faults on critical sensors and faults on non-critical
sensors. For faults on non-critical sensors, a closed-loop
observer without the faulty sensor provides a better state
estimation, based on which a state feedback controller
can give the control input closest to the ideal control
input. Thus, pinpointing this observer during the FDI pro-
cess is the key for fault mitigation. Based on this property,
we propose the calculated control input (CCI) method to
switch among different observers, and potentially miti-
gate the impact of the fault on anon-critical sensor during
the FDI process. For faults on critical sensors, none of
the closed-loop observers can provide a good state esti-
mation. If the system is open-loop stable, we can use
an open-loop observer for state estimation to mitigate
the impact of the sensor fault. If the system is marginally
stable, the only way is to replace the faulty sensor.

We also need a residual-based method based on
closed-loop observers for non-critical sensor fault iso-
lation. In this paper, we use a method adopted from
Bouibed et al. (2014), and call it the calculated outputs
(CO) method. The method in Bouibed et al. (2014) con-
sists of several sliding mode observers, each excluding a
particular sensor or actuator. The sliding mode observer
without the faulty sensor generates a significant resid-
ual signal. In contrast, we use a bank of Luenberger
observers (or Kalman filters)1 for the CO method. In this
case, the observers with the faulty sensor generate sig-
nificant residuals, and the CO method is not robust to
disturbance in the system.

Table 1 shows the abilities of the CO, CR, MOLO, and
CCI methods. Figure 2(a) shows when to use those four
methods based on their abilities. We systematically inte-
grate them as shown in Figure 2. During the observers’
transient state, we use the CR method for non-critical

Table 1. Abilities of the CO, CR, MOLO and CCI methods.

Fault detection

Observers
transient state

Observers
steady state Fault isolation

Fault
mitigation

Snc CR CR, CO CO CCI
Sc MOLO MOLO

(a)

(b)

Figure 2. (a) Integration of the four methods: CO, CR, MOLO and
CCI; (b) Flow chart of the integration.

sensor fault detection. If a sensor fault is detected and the
observers have already reached their steady state, then
we use the COmethod for fault isolation. The CCImethod
is used for non-critical sensor faultmitigation during both
the observers’ transient state and steady state. Suppose a
fault on a non-critical sensor starts at tf , and it is detected
and isolated at td . During the detection delay td − tf , the
CCI method may have already switched to the observer
without the faulty sensor, providing estimated state to
the controller. The MOLO method is running in parallel
with the CR, CO, and CCI methods to detect and isolate
a critical sensor fault.
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3. Mathematical formulation of the problem

The analysis is carried out based on a linear time-invariant
discrete-time system equipped with multiple observers,
a state feedback controller and a residual-based fault
detector.

3.1. Physical system

We model the physical system as a linear time-invariant
discrete-time system. It has the following form:

x(k + 1) = Ax(k)+ Bu(k)+ Dd(k)+ w(k),

y(k) = Cx(k)+ Ff (k)+ v(k),
(1)

where x(k) ∈ R
n×1 is the system state, y(k) ∈ R

m×1 is the
sensor measurement, u(k) ∈ R

p×1 is the control input,
d(k) ∈ R

s×1 is the unknown disturbance, f (k) ∈ R
1×1

is the fault signal added to the sensor measurements,
the process noise w(k) ∈ R

n×1 and the sensor noise
v(k) ∈ R

m×1 are zero mean random vectors with bounds
‖w(k)‖ ≤ ω and ‖v(k)‖ ≤ υ (in this paper, we use ‖ ·
‖ to denote ‖ · ‖∞), respectively, A ∈ R

n×n, B ∈ R
n×p,

C ∈ R
m×n, D ∈ R

n×s are real constant matrices, and F =
[0 · · · 1if · · · 0]T ∈ R

m×1 is a fault vector, with 0 corre-
sponding to the faultless sensor, and 1if corresponding
to the faulty sensor, and if is the index for the faulty sen-
sor. Based on Assumption 2.1, F has atmost one non-zero
element.

3.2. Closed-loop observers and open-loop
observers

At each time step, all of the sensor measurements y(k)
and the control inputs u(k) are gathered for state esti-
mation. Two different kinds of observers can be utilized:
closed-loop observers and open-loop observers.

3.2.1. Closed-loop observers
A closed-loop observer corrects the estimation with a
feedback from the sensor measurements as shown in
Figure 3.

Based on Assumption 2.1, sensor measurements can
be divided into two sets: Snc and Sc. Snc contains mo

non-critical sensors. Sc contains critical sensors. In order

Figure 3. Structure of a closed-loop observer.

to design multiple closed-loop observers, we need the
following assumption:

Assumption 3.1: Set Snc contains at least one non-
critical sensor, i.e.mo > 0.

We assume without loss of generality that the rows
of the output matrix C are ordered such that the first
mo sensors are non-critical sensors. Thus,mo + 1 closed-
loop observers can be designed. Observer 0 uses all of
the sensor measurements. Observer i uses all but sensor
i (i = 1, 2, . . . ,mo). For the closed-loop observers, we use
Luenberger observers with the following form:

x̃i(k + 1) = Eix̃i(k)+ Liyi(k)+ Bu(k)

= Eix̃i(k)+ Li(Cix(k)+ vi(k)+ Fif (k))+ Bu(k),
(2)

where x̃i(k) ∈ R
n×1 is the state estimated by the closed-

loop observer i (i = 0, 1, 2, . . . ,mo), yi(k) ∈ R
(m−1)×1 is

the sensor measurements used by observer i which does
not contain the ith element of y(k), vi(k) does not con-
tain the ith sensor noise, Ei = A − LiCi, Li ∈ R

n×(m−1) is
the observer gain, placing the eigenvalues of Ei in the unit
circle, Ci ∈ R

(m−1)×n is the output matrix for observer i
and it does not contain the ith rowofC, and Fi ∈ R

(m−1)×1

is the fault vector of observer iwhich does not contain the
ith element of F. If i = if , then Fi = 0(m−1)×1. This means
that observer if does not use the faulty sensor if for state
estimation. The corresponding observer state matrix and
observer gain that do not use the faulty sensor are Eif and
Lif , respectively.

Remark: Our assumption indicates that the system is
detectable without one of the sensors in Snc. If the system
is detectable and thenoise is truncatedGaussian, the time
varying gain of a Kalman filter converges in a few steps.
Therefore, for the closed-loop observers, we can also use
Kalman filterswith the steady-state Kalmangains (Moand
Sinopoli, 2010).

3.2.2. Open-loop observers
An open-loop observer is running in parallel with the
physical system, reproducing thebehaviour of the system
as shown in Figure 4.

Figure 4. Structure of an open-loop observer.
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Due to the lack of guaranteed estimation error con-
vergence, the state of the open-loop observer is updated
periodically by the closed-loop observer 0 which uses all
of the sensor measurements. As mentioned in Section 2,
we designM groups of open-loop observers, each group
with N observers. The observers in the same group have
the sameupdateperiod. Then, anopen-loopobserver has
the following form after one update period

x̂g,i(k + κf ,g) = Aκf ,g x̃0(k)+�
κf ,g−1
j=0 AjBu(k + κf ,g − 1 − j),

(3)

where x̂g,i(k) ∈ R
n×1 is the state estimated by the open-

loop observer i in group g (i = 1, . . . ,N, g = 1, . . . ,M), and
κf ,g is the update period of group g.

3.3. State feedback controller

A state feedback controller calculates a control command
based on the system state, and applies it to the input of
the system. The following assumption enables the utiliza-
tion of a state feedback controller.

Assumption 3.2: The system is controllable.

Since the real state of the system is unknown, the
controller can only use the state estimated by a closed-
loop observer with the following form (Phillips and
Nagle, 1994):

u(k) = Kx̃i(k), (4)

where K ∈ R
p×n is the controller gain placing the eigen-

values of A + BK in the unit circle. Notice that an open-
loop observer cannot provide as good of an estimation
of performance as a closed-loop observer due to system
noise. Therefore, we use a closed-loop observer for the
state feedback controller if the system is under normal
operation or under non-critical sensor fault. If an open-
loop stable system is under critical sensor fault, then we
can switch to an open-loop observer to help mitigate the
impact of the sensor fault.

3.4. Residual-based fault detector

In this paper, the residual-based fault detector uses the
CO method, which is adopted from Bouibed et al. (2014).
In contrast to the method in Bouibed et al. (2014), the
CO method consists of multiple Luenberger observers as
shown in Equation (2), and generates the residuals based
on the subtraction between the sensor measurements yi
(without the ith output) and the estimated outputs Cix̃i as

shown in Equation (5)

ri(k) = (yi(k)− Cix̃i(k))
TQi(yi(k)− Cix̃i(k)) (5)

where Qi is a real constant weighting matrix for observer
i2, and ri(k) ∈ R is the residual generated based on
observer i.

The residual generated based on observer 0 is com-
pared with a selected threshold θCO to determine the
occurrence of a sensor fault. When a sensor fault occurs,
the closed-loop observer if , which does not use the faulty
sensor, is not affected by the sensor fault, and thus
provides a better state estimation compared to other
observers .3 Then the residual generated by observer if is
smaller than the residuals generated by other observers
(i �= if ). Therefore, we can locate the faulty sensor by find-
ing the smallest residual among the observers from 1 to
mo. After the faulty sensor is located, the estimated fault
signal is given by

f̃ (k) = {y(k)− Cx̃if (k)}if (6)

where f̃ (k) ∈ R
1×1 is the estimated fault signal, and

{y(k)− Cx̃if (k)}if is the if th element of the vector y(k)−
Cx̃if (k)

Algorithm 1 gives the procedure of the CO method.
First, we calculate the residuals based on different
observers. Then, we use the residual of observer 0 for
fault detection, and compare the rest of the residuals for
fault isolation. Notice that the CO method cannot dis-
tinguish a disturbance from a sensor fault since Luen-
berger observer is not robust to disturbance. This issue is
addressedby complementing theCOmethodwith theCR

Algorithm 1: CO method for sensor FDI
function CO;
Input : y(k), x̃i(k) (i = 0, 1, . . . ,mo)

Output: IF, if
//Residual generation for all
observers;
for i = 0 tomo do

ri(k) = (yi(k)− Cix̃i(k))TQi(yi(k)− Cix̃i(k));
end
//Fault detection;
if r0(k) ≥ θCO then

IF = 1;
//Fault isolation;
if = mini ri(k);
IFB = if ;
f̃ (k) = {y(k)− Cx̃if (k)}if ;

else
IFB = 0;

end
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method introduced in Section 4.3 which has the ability to
distinguish a disturbance from a sensor fault.

3.5. Notations

Main notations are summarized here. x is the real system
state. x̃ is the estimated state by a closed-loop observer. x̂
is the estimated state by an open-loop observer. e is the
estimation error between observer state and system real
state. eμ,ν is the difference of estimated states between
two closed-loop observersμ and ν. ẽμ(ν) is the calculated
estimation error of closed-loop observer μ, and the cal-
culation is based on eμ,ν . Detailed notations are shown in
Table A.7

4. Framework components description and
integration

Throughout this section, a simple system of a moving
object is utilized as an illustration. First, we simulate sen-
sor faults on themoving object systemequippedwith the
COmethod-based fault detector to understand its limita-
tions. Then, three newmethods are introduced and anal-
ysed in the deterministic case (noise free). The impact of
random system noise is discussed for eachmethod there-
after. The simulation result shows the improvements of
the proposed methods compared to the CO method.
Finally, we provide an algorithm to integrate the CO
method and the three newmethods.

4.1. Moving object system

The moving object system is a 1 kg mass moving along a
horizontal line. Two sensors are measuring the two out-
puts: the velocity yv and the position yp, respectively.
A state feedback controller applies a horizontal force on
the mass. The sampling time is 0.1 s. The system has ini-
tial state (0, 0), process noise with bound 0.001 (m/s or
m), and sensor noise with bound 0.01 (m/s or m). The ini-
tial states of the observers are chosen as (1, 0.5) 4. The
state space representation of the moving object system
is shown as

x(k + 1) = Ax(k)+ Bu(k)+ w(k),

y(k) = Cx(k)+ v(k),
(7)

where x = [ xv
xp

]
, y = [ yv

yp

]
, A = [

1 0
0.1 1

]
, B = [

0.1
0.005

]
, and

C = [
1 0
0 1

]
.

By checking the rank of observability matrix, the mov-
ing object system is observable with yv and yp or only yp,
but unobservable with only yv . Therefore, yv ∈ Snc, and
yp ∈ Sc. Two observers can be designed with observer

poles placed at [0.1 0.11]. Observer 0 uses both sensor
measurements yv and yp. Observer 1 uses only yp.

Two fault scenarios are considered:

(1) fault α: a ramp signal with slope 0.05m/s2 (0.005
m/s per time step) added to the velocity sensor yv ,
saturating at 1m/s;

(2) faultβ : a rampsignalwith slope0.001m/s (0.0001m
per time step) added to the position sensor yp, sat-
urating at 1m.

Both faults start at 10 s and run until the end of the sim-
ulation. Here, we consider ramp faults with small slopes
because they are hard to detect compared to ramp faults
with large slopes or step faults with large magnitudes.

4.2. The impact of sensor faults

Two fault cases are run on the moving object system
equipped with the CO method-based fault detector to
show its limitations. Based on each limitation, a new
method is discussed and proposed.

Figures 5–7 show the estimatedposition states of both
observers x̃0, x̃1, the real state x, and the sensor measure-
ment y of the system equipped with the CO method-
based fault detector under fault α, β and normal oper-
ation, respectively. In both Figures 5 and 6, false alarms
are generated by the CO method during the observers’
transient state, which is about 0.2 s, when the system is
actually under normal operation. From Figure 7, it can
be seen that the imperfect initial state of the observers
causes the CO method to generate false alarms. Accord-
ing to Equation (5), the residual ri(k) of the CO method
is a function of the observer’s estimation error under nor-
mal operation. A large estimationerrormakes the residual
exceed the threshold, causing false alarms during the
observers’ transient state. To enable fault detection dur-
ing observers’ transient state, the CR method, described
in Section 4.3, which utilizes the CR of observers’ estima-
tion error, will be applied.

As shown in Figure 6(b), when the system is under
fault β , no alarm is generated since the fault is not
detected by the CO method-based fault detector. The
reason behind this behaviour is that the system is not
detectable when the position sensor yp is removed, and
the fault signal is changing slightly at each time step to
avoid significant change in the residuals. An open-loop
observer (3) does not use any sensor for state estimation.
Thus, this issue canbepotentially addressedby theMOLO
method introduced in Section 4.4.

As shown in Figure 5(b, c), although the CO method
successfully locates the faulty sensor and then the sys-
tem switches to observer 1 for state estimation after
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Figure 5. (a) The estimated position states of both observers x̃0, x̃1, the real state x, and the sensor measurement y of the system under
fault α; (b) fault alarms IF of the CO method under fault α; and (c) observer index IFB selected for the state feedback controller under
fault α.

Figure 6. (a) The estimated position states of both observers x̃0, x̃1, the real state x, and the sensor measurement y of the system under
fault β ; (b) fault alarms IF of the COmethod under fault β .

18 s, there is 8 s detection delay and the system switches
between the two observers during 13 s to 18 s. This is
caused by the relatively small fault signal compared to
the system noise and the threshold. Thus, the faulty sen-
sor cannot be located immediately. This detection delay
makes the maximum absolute value of the position of

the mass reach 30 cm as shown in Figure 5(a). The direct
reason for this divergence is the discrepancy of the con-
trol input provided by the observer-based state feedback
controller. To address this issue, we need to switch to the
closed-loop observer without the faulty sensor as soon as
possible and continue using that observer during the FDI
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78 Z. WANG ET AL.

Figure 7. (a) The estimated position states of both observers x̃0, x̃1, the real state x, and the sensor measurement y of the system during
the observers’ transient state under normal operation; (b) fault alarms IF during the observers’ transient state.

process. Thus, we propose the CCI method to compare
the control input calculated based on the state estimated
by each closed-loop observer with an ‘ideal’ control input
calculated based on the state estimated by an open-loop
observer, and to switch to the observer which gives the
smallest difference between the CCI and the ideal con-
trol input. This method has the potential to mitigate the
impact of a non-critical faulty sensor during the FDI pro-
cess. The maximum absolute value of the position of the
system under the COmethod will be compared with that
under the CCI method in Section 4.5.

4.3. CRmethod for fault detection during transient
and steady state

This method is proposed to detect the occurrence of
an anomaly based on the convergence of estimation
error. It enables fault detectionduring theobservers’ tran-
sient state. To achieve robust fault detection, a distur-
bance in the system is distinguished from a sensor fault
by analysing the bias of the estimation error. First, this
method is introduced on an ideal control system. Then
the impact of the process noise and the sensor noise are
discussed.

4.3.1. Ideal system case
Three different situations are considered for this method:
normal operation, disturbance, and sensor fault. Estima-
tion error ei of closed-loop observer i, and the differ-
ence of estimated states eμ,ν between two closed-loop
observers μ and ν under three situations are shown in
Equation (8) through Equation (13).

Under normal operation

ei(k + 1) = x(k)− x̃i(k) = Eiei(k), (8)

eμ,ν(k + 1) = x̃μ(k + 1)− x̃ν(k + 1)

= Eνeν(k)− Eμeμ(k). (9)

Under disturbance

ei(k + 1) = Eiei(k)+ Dd(k), (10)

eμ,ν(k + 1) = Eνeν(k)− Eμeμ(k). (11)

Notice that Equations (9) and (11) are the same.
Under sensor fault

ei(k + 1) = Eiei(k)− LiFif (k), (12)

eμ,ν(k + 1) = Eνeν(k)− Eμeμ(k)− (LνFν − LμFμ)f (k).
(13)

The first step of the CR method is to calculate the esti-
mation error of each closed-loop observer. The dynamics
of eμ,ν under both normal operation and disturbance are
the evolution of the estimation errors of the two closed-
loop observers eμ and eν . Therefore, the estimation errors
of both observers can be decoupled over two time steps.
However, the dynamics of eμ,ν under sensor fault involves
two unknown fault vectors Fμ and Fν , and the unknown
fault signal f (k). Thus, the estimation errors cannot be
correctly decoupled under sensor fault. Lemma 4.1 gives
the formulas for estimation error decoupling of any two
different observers.

Lemma 4.1: Given an ideal control system (1) with
w(k) = 0 and v(k) = 0, the calculated estimation error
ẽμ(ν) and ẽν(μ) are derived based on Equations (14)and (15)
respectively, with the following results:

(1) When the system is under normal operation or under
disturbance, ẽμ(ν) = eμ and ẽν(μ) = eν ;

(2) Whenthesystemisunder sensor fault, ẽμ(ν) �= eμ and
ẽν(μ) �= eν if LνFν �= LμFμ.

ẽμ(ν)(k) = (Eν − Eμ)
−1(eμ,ν(k + 1)− Eνeμ,ν(k)) (14)

ẽν(μ)(k) = (Eν − Eμ)
−1(eμ,ν(k + 1)− Eμeμ,ν(k)), (15)

where Eν − Eμ = A − LνCν − A + LμCμ = LμCμ − LνCν .
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Remark: Wedesign Lμ and Lν tomake Eν − Eμ invertible.

Proof: (1) Under normal operation or under disturbance,
the evolution of eμ,ν (9) and eμ,ν(k) = eν(k)− eμ(k) are
substituted to Equation (14),

ẽμ(ν)(k) = (Eν − Eμ)
−1(Eνeν(k)− Eμeμ(k)

− Eν(eν(k)− eμ(k))) = eμ(k). (16)

Similarly, ẽν(μ)(k) = eν(k).
(2) Under sensor fault, the evolution of eμ,ν (13) and

eμ,ν(k) = eν(k)− eμ(k) are substituted to Equation (14),

ẽμ(ν)(k) = (Eν − Eμ)
−1(Eνeν(k)− Eμeμ(k)

− (LνFν − LμFμ)f (k)− Eν(eν(k)− eμ(k)))

= eμ(k)− (Eν − Eμ)
−1(LνFν − LμFμ)f (k) (17)

if LνFν �= LμFμ, then ẽμ(k) �= eμ(k).
Similarly, ẽν(μ)(k) �= eν(k) if LνFν �= LμFμ. �

Based on Lemma 4.1,mo estimation errors can be cal-
culated for each observer. In ideal system case, thesemo

estimation errors are averaged to be the estimation error
ẽi of each observer. The combination of mo estimation
errors for a noisy system is introduced in Section 4.3.2.

After getting the estimation errors of all of the
observers, the next step is to analyze the convergence
behaviour of the estimation error of each observer. For
each observer, ẽi ∈ R

n×1 contains n states. The evolution
matrix Ei of the estimation error of observer imay not be
a diagonal matrix. This causes the coupling of estimation
errors between different states, which makes the ratio of
estimation error of each state non-constant. Therefore,
instead of using the estimation errors directly, we diago-
nalize the evolutionmatrix Ei using abasis of eigenvectors
Vi. The diagonal elements in the diagonalized matrix E�,i
(eigenvalues of Ei), where E�,i = (Vi)−1EiVi, are the same
as the time-invariant observer poles. Then, we can define
the CR to specify the convergence of the estimation error
for each state.

Definition 4.2 (CR): Ratio of the absolute value of esti-
mation error along with time step k (18) is called the CR.

{cri}j(k) = 1
κCR

[∣∣∣∣ {ẽ�,i(k)}j
{ẽ�,i(k − 1)}j

∣∣∣∣
+

κCR∑
ki=2

ki

√∣∣∣∣ {ẽ�,i(k)}j
{ẽ�,i(k − ki)}j

∣∣∣∣
⎤
⎦ , (18)

where ẽ�,i(k) = (Vi)−1ẽi(k), {ẽ�,i}j(k) is the jth element in
ẽ�,i(k), and κCR is a selected integer to average the CRs
over κCR time steps.

Based on the above definition, the CR of each estima-
tion error {cri}j is actually the same as the corresponding
jth observer pole under normal operation. This is also
indicated by

∣∣∣∣ {ẽ�,i(k)}j
{ẽ�,i(k − ki)}j

∣∣∣∣ =
∣∣∣∣∣ {(E�,i)

ki ẽ�,i(k − ki)}j
{ẽ�,i(k − ki)}j

∣∣∣∣∣ =
∣∣∣({E�,i}j)ki ∣∣∣ ,

(19)
where {E�,i}j is the jth diagonal element of matrix E�,i.
Therefore,

{cri}j(k) = |{E�,i}j|, ∀k ≥ 0. (20)

An anomaly (a disturbance or a sensor fault) can
change the CR of the estimation error in two possible
cases. One case is that an anomaly makes the estima-
tion error converge faster to zero. The other case is that
an anomaly makes the estimation error converge slower
or diverge to some other non-zero value. In ideal system
case, theanomalies inboth cases canbedetectedbycom-
paring the CRs with observer poles. If a CR is larger or
smaller than its corresponding observer pole, then this
CR indicates the occurrence of an anomaly. Definition 4.2
shows that (mo + 1)× n CRs are calculated at each time
step. Because of the system noise, it is possible that
some of the CRs indicate an anomaly even though there
is no anomaly. So we define the system as an anoma-
lous system if as least half of the CRs indicate anomaly.
A threshold is selected for noisy system as discussed in
Section 4.3.2.

To achieve robust fault detection, a disturbance should
be distinguished from a sensor fault (Hwang et al., 2010).
For this purpose, bias is defined

Definition 4.3 (Bias): The term b(k) in an affine function
x(k + 1) = Ax(k)+ b(k) is called bias.

Under disturbance, the bias isDd(k), which is the same
for all observers. Under sensor fault, the bias is −LiFif (k),
which is different for different observers. The disturbance
signal d(k) can be correctly determined when the system
is under disturbance because of the correct decoupled
estimation error. In contrast, the fault signal cannot be
correctly determined because of the incorrect decoupled
estimation error and unknown Fi. Based on this analysis,
the bias is calculated based on each observer according
to Equation (22) in Theorem 4.4.

Theorem 4.4: Given an ideal control system (1) with
w(k) = 0 and v(k) = 0, the biases d̃μ(ν)(k) and d̃�,μ(ν)(k)
are calculated according to Equations (21) and (22) respec-
tively, with the following results:
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(1) When the system is under disturbance,

∀μ, ν = 0, 1, . . . ,mo ∧ μ �= ν,

d̃μ(ν)(k) = d̃�,μ(ν)(k) = d(k).

(2) When the system is under sensor fault,

∀μ, ν = 0, 1, . . . ,mo ∧ μ �= ν,

d̃μ(ν)(k) = d̃ν(μ)(k),

d̃�,μ(ν)(k) �= d̃�,ν(μ)(k) if Vμ �= Vν , (21)

d̃μ(ν)(k) = (DTD)−1DT[ẽμ(ν)(k + 1)− Eμẽμ(ν)(k)],

d̃�,μ(ν)(k) = ((D�,μ)
TD�,μ)

−1(D�,μ)
T

[ẽ�,μ(ν)(k + 1)− E�,μẽ�,μ(ν)(k)], (22)

where D�,μ = (Vμ)−1D, and E�,μ = (Vμ)−1EμVμ.

Proof: See Appendix 2 �

Theorem 4.4 shows that (mo + 1)× mo biases are cal-
culated at each time step. Each bias is compared with
other biases. If any two biases disagree with each other,
then the system is under sensor fault. If the bias analysis
indicates that the system is under disturbance, then we
can determine the disturbance signal by averaging all of
the biases. The combination of all of the biases for a noisy
system is introduced in Section 4.3.2.

4.3.2. Noisy system case
Lemma 4.1 and Theorem 4.4 in Section 4.3.1 show the
effectiveness of the CR method in fault detection when
the system is ideal. In practice, we also need to consider
system noise: process noise and sensor noise. When only
process noise exists in the system, the output of the sys-
tem can still be correctly measured, which means the
state of the system can be exactly known. Therefore, pro-
cess noise does not affect the accuracy of the estimation
error calculation. However, when sensor noise contami-
nates the sensormeasurements, the estimation error can-
not be correctly calculated. The boundedness of sensor
noise ensures the boundedness of the error of estimation
error ‖ẽμ(ν) − eμ‖. Lemmas 4.5 and 4.6 give the impact
of process noise and the impact of sensor noise on the
estimation error calculation, respectively.

Lemma 4.5: Given a control system (1) with bounded
process noise and v(k) = 0, ẽμ(ν)(k) = eμ(k) still holds
when the system is under normal operation or under
disturbance.

Proof: When the system is subject to the process noise
w(k), the estimation error evolution becomes

eμ(k + 1) = Eμeμ(k)+ w(k), (23)

Then the difference of the estimated states between two
observers μ and ν is the same as Equation (9). By sub-
stituting Equation (9) into Equation (14), the calculated
estimation error becomes

ẽμ(ν)(k) = (Eν − Eμ)
−1[Eνeν(k)− Eμeμ(k)

− Eν(eν(k)− eμ(k))] = eμ(k). (24)

�

Lemma 4.6: Given a control system (1)with bounded sen-
sor noise and w(k) = 0, ‖ẽμ(ν)(k)− eμ(k)‖ is bounded by
‖(Eν − Eμ)−1‖(‖Lν‖ + ‖Lμ‖)υ .

Proof: See Appendix 3. �

Lemma4.6 shows that the impact of sensor noise is dif-
ferent for estimation errors calculated based on different
pairs of observers. Thus, when calculating the estima-
tion error of each observer, we combine its mo decou-
pled estimation errorswithdifferentweighting ratios. The
weighting ratio is determined based on the bound of
‖ẽμ(ν) − eμ‖. If the bound of ‖ẽμ(ν) − eμ‖ is larger, then
the corresponding weighting ratio is smaller. The com-
bined estimation error and theweighting ratio are shown
as follows:

ẽμ(k) = �
mo
ν=0,ν �=μφν ẽμ(ν),

�
mo
ν=0,ν �=μφν = 1,

φν = 1
mo − 1

�
mo
j=0,j �=μ,j �=ν ēμ(j)
�

mo
j=0,j �=μēμ(j)

,

ēμ(ν) = ‖(Eν − Eμ)
−1‖(‖Lν‖ + ‖Lμ‖)υ . (25)

The sensor noise affects the accuracy of estimation error
decoupling, thus affecting the CRs and anomaly detec-
tion. Lemma 4.6 indicates that the impact of sensor noise
can be mitigated by choosing the observer gains Lμ and
Lν with smaller norms. An observer gain with a smaller
norm, however, may reduce the convergence speed of
the estimation error. Thus, there is a trade-off in choos-
ing observer gains. The impact of sensor noise on the CRs
can also be mitigated via averaging over κCR time steps
as shown in Definition 4.2. In addition to techniques for
mitigating the impact of sensor noise, a threshold θCR for
CRs should be selected to balance the tolerance of system
noise and the ability to detect an anomaly. As discussed
in Section 4.3.1, the CRs are the same as the observer
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poles under normal operation but they are different from
observer poles under anomaly in ideal case. However, the
observer poles are usually selected to be close to 0 to
ensure fast observer’s estimation error convergence and
noise exists on the system. Sowe select a upper threshold
θCR, which is larger than the largest observer pole but less
than one. Then the sensor fault, which makes the estima-
tion error converge faster, cannot be detected by the CR
method. With the threshold θCR, the lower bound of the
fault signal that can be detected is (κCR = 1)

‖f (k)‖ ≥ ‖{(Eν − Eμ)
−1}j(LνFν − LμFμ)‖−1

(θCR‖{eμ(k − 1)}j‖(1 + θCR)‖{(Eν − Eμ)
−1}j‖

(‖Lν‖ + ‖Lμ‖)υ + ‖{eμ(k)}j‖. (26)

This lower bound is proportional to the threshold θCR and
the bound of the sensor noise υ .

Both the process noise and the sensor noise affect the
accuracy of the bias calculation, thus affecting the ability
to distinguish a disturbance from a sensor noise. Based
on the boundedness of the process noise and the sensor
noise, the error of the bias calculation ‖d̃�,μ(ν)(k)− d(k)‖
is also bounded when the system is under disturbance.
Lemmas4.7 and4.8give theboundof‖d̃�,μ(ν)(k)− d(k)‖
under disturbance when the system is subject to either
the process noise or the sensor noise, respectively.

Lemma 4.7: Given a control system (1)with bounded pro-
cess noise and v(k) = 0, ‖d̃�,μ(ν)(k)− d(k)‖ is bounded by
‖((D�,μ)TD�,μ)−1(D�,μ)T(Vμ)−1‖ω.

Proof: See Appendix 4. �

Lemma 4.8: Given a control system (1)with bounded sen-
sor noise and w(k) = 0, ‖d̃�,μ(ν)(k)− d(k)‖ is bounded by
‖((D�,μ)TD�,μ)−1(D�,μ)T(Vμ)−1‖(1 + ‖Eμ‖)
‖(Eν − Eμ)−1‖(‖Lν‖ + ‖Lμ‖)υ .

Proof: See Appendix 5. �

Combining Lemmas 4.7 and4.8, theboundof the error
of the bias calculation is

‖d̃�,μ(ν)(k)− d(k)‖ ≤ ‖((D�,μ)TD�,μ)−1(D�,μ)
T(Vμ)

−1‖
(ω + (1 + ‖Eμ‖)‖(Eν − Eμ)

−1‖(‖Lμ‖ + ‖Lν‖)υ). (27)

Notice that the bounds are different for biases calculated
based on different pairs of observers, and that they are
all zero-mean. Based on the bounds, one specific thresh-
old θd,μ(ν),ζ(η) (μ, ν, ζ , η = 0, ..,mo ∧ μ �= ν ∧ ζ �= η) can
be selected to compare with the difference between any
two biases averaged over κCR time steps, thus determin-
ing whether the system is under disturbance or sensor

fault. If any onepair of the biases exceeds the correspond-
ing threshold, then the system is under sensor noise.
Otherwise, the system is under disturbance.

If the system is under disturbance, the combination
of the weighted biases is considered as the disturbance
signal. The weighting ratio of each bias is determined
basedon theboundof ‖d̃�,μ(ν)(k)− d(k)‖. If thebound is
larger, then the corresponding weighting ratio is smaller.
The combined bias and the weighting ratio are shown as
follows:

d̃(k) = �
mo
ν=0,ν �=μ�

mo
μ=0ψμ(ν)d̃�,μ(ν)(k)

�
mo
ν=0,ν �=μ�

mo
μ=0ψμ(ν) = 1,

ψμ(ν) = 1
(mo + 1)mo − 1

�
mo
j=0,j �=i�

mo
i=0,i �=μd̄i(j) +�

mo
j=0,j �=ν d̄μ(j)

�
mo
j=0,j �=i�

mo
i=0d̄i(j)

,

d̄μ(ν) = ‖((D�,μ)TD�,μ)−1(D�,μ)
T(Vμ)

−1‖
× (ω + (1 + ‖Eμ‖)‖(Eν − Eμ)

−1‖(‖Lμ‖ + ‖Lν‖)υ).
(28)

Algorithm 2 shows the procedure of the CR method. The
CR method contains three steps. The first step is to calcu-
late the estimation error for each observer. Then the CRs
of the estimation errors are used to detect the occurrence
of an anomaly. If an anomaly is detected, biases are calcu-
lated and analysed to determine whether the anomaly is
a disturbance or a sensor fault.

Figure 8 shows the fault alarms generated by the CR
method under fault α. During the observers’ transient
state, false alarms are eliminated compared to Figures
5(b), 6(b) and 7(b). When the system is under sensor fault
α, there is about 2 s detection delay, which is caused by
κCR for averaging the CR and the threshold θCR. The detec-
tion delay is decreased compared to the 8 s detection
delay in Figure 5.

4.4. MOLOmethod for critical sensor FDI

The MOLO method has the potential to detect and iso-
late faults on critical sensors. It consists ofmultiple groups
of open-loop observers. The states of the open-loop
observers are updated periodically by the estimated state
of the closed-loop observer using all of the sensor mea-
surements. The open-loop observers in different groups
have different update frequencies. Residuals are formed
based on the difference between the measured outputs
of the system and the estimated outputs of the open-
loop observers. Then the averaged residual is analysed to
determine the occurrence of a critical sensor fault, and to
isolate the faulty sensor.
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Algorithm 2: CR method for sensor fault detection
function CR;
Input : x̃i(k − κCR : k + 1)(i = 0, 1, . . . ,mo) from

time step k − κCR to k + 1
Output: IA, IF, ID, d̃(k − 1)
//Estimation error calculation;
for μ = 0 tomo do

for ν = 0 tomo do
if μ �= ν then

eμ,ν(k) = x̃μ(k)− x̃ν(k);
eμ,ν(k + 1) = x̃μ(k + 1)− x̃ν(k + 1);
ẽμ(ν)(k) =
(Eν − Eμ)−1(eμ,ν(k + 1)− Eνeμ,ν(k));
ẽ�,μ(ν)(k) = (Vμ)−1ẽμ(ν)(k);

end
end
ẽμ(k) = �

mo
ν=0,ν �=μφν ẽμ(ν);

ẽ�,μ(k) = (Vμ)−1ẽμ(k);
//Convergence ratio calculation;
for j = 1 to n do

{crμ}j(k) =
1
κCR

[∣∣∣ {ẽ�,μ(k)}j
{ẽ�,μ(k−1)}j

∣∣∣ + ∑κCR
ki=2

ki

√∣∣∣ {ẽ�,μ(k)}j
{ẽ�,μ(k−ki)}j

∣∣∣];
//Anomaly detection;
if {crμ}j(k) > θCR then

IA = IA + 1;
end

end
end
//Determine whether it is a sensor
fault or a disturbance;
if IA ≥ (mo+1)×n

2 then
for i = 1 tomo do

d̃�,μ(ν)(k − 1) =
((D�,μ)TD�,μ)−1(D�,μ)T[ẽ�,μ(ν)(k)−
E�,μẽ�,μ(ν)(k − 1)];

end
if
Any avg(d̃�,μ(ν)(k − 1 − κCR : k − 1)
−d̃�,ζ(η)(k − 1 − κCR : k − 1)) > θd,μ(ν),ζ(η)

then
IF = 1;

else
ID = 1;
d̃(k − 1) =
�

mo
ν=0,ν �=μ�

mo
μ=0ψμ(ν)d̃�,μ(ν)(k − 1);

end
end

In noise-free case (w(k) = 0, v(k) = 0), the MOLO
method only works if the open-loop system is stable or

Figure 8. Fault alarms IF of the CR method under fault α.

marginally stable. This is due to the fact that the estima-
tion error of open-loop observer will diverge if the system
is unstable, i.e. the eigenvalues of A lie outside of the unit
circle, according to Equation (29).

eo(k) = x(k)− x̂(k) = Akeo(0), (29)

where eo(0) is the initial estimation error. After introduc-
ing systemnoise, the condition for the estimation error of
an open-loop observer to be bounded is given in Propo-
sition 4.9.

Proposition 4.9: Given a control system (1), and an open-
loop observer (3) the following results can be drawn:

(1) If all of the eigenvalues of A lie inside the unit circle,
then the estimation error of an open-loop observer is
bounded;

(2) If one or more of the eigenvalues of A lie on the unit
circle and ‖A‖ = 1, then the estimation error of an
open-loop observer is bounded.

Proof: See Appendix 6. �

For systems that donot satisfy the conditions in Propo-
sition 4.9, we need to periodically update the state of
the open-loop observer with the state estimated by the
closed-loop observer 0 which uses all of the sensor mea-
surements when no fault is detected. The initial estima-
tion error of the open-loop observer is then the same as
the estimation error of the closed-loop observer.

There is a trade-off between the estimation perfor-
mance and the ability to detect a critical sensor fault. If
the update frequency is fast, then the state estimated by
the open-loop observer can track the state estimated by
the closed-loop observer well, which is indicated by

eo(k) = Ake(0)+�k−1
i=0 A

iw(k − 1 − i) (30)
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where e(0) is the estimation error of the closed-loop
observer 0. If k is smaller, then the divergence of
�k−1

i=0 A
iw(k − 1 − i) is smaller, which means a better esti-

mation under normal operation. However, fast update
frequency can degrade the ability to detect a sensor fault,
which is indicated by

r(k) = y(k)− Cx̂(k)

= C(Ake(0)+�k−1
i=0 A

iw(k − 1 − i))+ v(k)+ Ff (k).
(31)

The ramp fault signal f (k) is increasing with the time step
k. At the time step that f (k) is significant, the fault can be
detected.

The above discussion on the trade-off shows the
necessity to have multiple open-loop observers for a
marginally stable system with ‖A‖ > 1. In this paper, we
divide the multiple open-loop observers into M groups.
Group 1 has the slowest update frequency and group
M has the fastest update frequency. Each group has N
observers with the same update frequency. Based on the
trade-off, if one group triggers an alarm, then the groups
with slower update frequencies generate alarms as well,
but the groups with faster update frequencies may not
generate alarms. So if all of the groups detect a sensor
fault, then we can say that the fault signal has a large
slope. If only some of the groups detect a sensor fault,
then we can say that the fault signal has a small slope.

Although the estimated state under the case that
‖A‖ > 1 may diverge for a marginally stable system, we
can mitigate the impact of the process noise via averag-
ing because the process noise has zero mean. To average
the residuals, we need to find the time steps that the
open-loop observers have similar divergence caused by
system noise. Taking one open-loop observer for exam-
ple, the state of the open-loop observer is updated every
κf ,g time steps and has been updated for jN times. At
time step k + (jN − 1)κf ,g, we need to average the resid-
ual at time steps k + (jN − j)κf ,g (j = 1, . . . , jN) to mitigate
the impact of system noise. Proposition 4.10 validates the
effectiveness of averaging.

Proposition 4.10: Givenacontrol system (1)anopen-loop
observer is updated every κf ,g time steps. The impact of the
system noise on the averaged residual (32) is mitigated.

ravg,g(k + (jN − 1)κf ,g) = 1
jN
�

jN
j=1rg(k + (jN − j)κf ,g),

(32)
where jN is a positive integer.

Proof: See Appendix 7. �

Proposition 4.10 shows the averaging method if we
only have one open-loop observer in each group. Then

the time steps that are needed for averaging is about
jN · κf ,g, which is large. To reduce the time steps for aver-
aging, we have N (N ≤ κf ,g) open-loop observers in each
group. We evenly distribute the time steps to update the
states of the open-loop observers within the same group
during one update period and we have

N = 
 κf ,g
κ�,g

�, (33)

where κ�,g is the update time step interval between two
adjacent open-loop observers i and i+1 in group g. Then
we calculate the average of the residuals generated by
the open-loop observers in the same group.

In order to average the residuals of N observers, we
need the following definition

Definition 4.11 (Leading observer): The leadingobser-
ver is the open-loop observer which has not been
updated for the longest time steps among all of the
observers in the same group during the time steps (j −
1) · κ�,g and j · κ�,g, where j is a positive integer. The lead-
ing observer could be found according to the following
formula:

Hg =
⎡
⎢⎢⎢
k − κf ,g
 k

κf ,g
�

κ�,g

⎤
⎥⎥⎥ + 1. (34)

Note that if �(k − κf ,g
k/κf ,g)�/κ�,g equals N, then set
Hg = 1.

To average the residuals, the first step is to find the
leading observer during the time steps (j − 1) · κ�,g and
j · κ�,g. Figure 9 helps explain how we average the resid-
uals generated by a group of three observers. Suppose
we are at time step k1, which is during the first update
period κf ,g. We simply average all the estimated states at
time step k1. Suppose we are at time step k2. Observer
(g, 1)has not beenupdated for k2 − κf ,g time steps,which
is larger than that of observer (g, 2) (k2 − κf ,g − κ�,g)
and that of observer (g, 3) (k2 − κf ,g − 2κ�,g). Therefore,
observer (g, 1) is the leading observer at time step k2.
Based on this leading observer, we find the correspond-
ing time stepswhen thedivergence is similar for the other
two observers. After getting the three estimated states,
we can calculate the averaged residual at time step k2.
It can been seen that the averaged residual is generated
over 2κf ,g time steps. The following formula shows the
averaged residual at time step k:

ravg,g(k) = 1
N
(�

Hg
i=1rg,i(k − (Hg − i)κ�,g)

+�N
i=Hg+1rg,i(k − κf ,g + (i − Hg)κ�,g)). (35)

The average of the finite zero-mean random vector
(N < ∞) does not exactly equal the zero vector. Based on
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84 Z. WANG ET AL.

Figure 9. Residuals averaging.

the bounds of the system noise and update period κf ,g, a
threshold θMOLO,g can be set for each group to compare
with the averaged residual ravg,g. Notice that θMOLO,g ∈
R
m×1 is a vector. We compare each element {ravg,g}j(k)

in ravg,g(k) with the corresponding element {θMOLO,g}j in
θMOLO,g. If {ravg,g}j(k) ≥ {θMOLO,g}j, then group g triggers a
fault alarm. Once the fault alarm is triggered, the states of
the group of the open-loop observers are not updated by
the closed-loop observer until the alarm is cleared.

Logic is applied to determine whether the system is
under sensor fault or under normal operation based on
which groups trigger fault alarms. Based on the discus-
sion about the trade-off, if a group triggers an alarm,
the groups with slower update frequencies should also
trigger alarms theoretically. Therefore, we find the group
g′ which has the fastest update frequency among the
groups that trigger fault alarms. If the majority of groups
from 1 to g′ trigger fault alarms, i.e. the inequality (36)
holds, then the system is under sensor fault. Otherwise,
it could be false alarms and the system is under normal
operation.

1
g′�

g′
g=1IF,g(k) ≥ θf , (36)

where θf is a selected value with range 0.5–1. The sen-
sor j, which makes the most of the groups that trig-
ger alarms have {ravg,g}j(k) ≥ {θMOLO,g}j(g = 1, 2, . . . , g′),
is identified as the faulty sensor.

When the system is subject to a sensor fault on a critical
sensor, the averaged residual is

ravg,g(k) = 1
N
(�N

i=1rg,i(k − (N − i)κ�,g)

= 1
N
�N

i=1CA
k3e(k − k3 − (N − i)κ�,g)

+ 1
N
�N

i=1Ff (k − (N − i)k�,g). (37)

The above equation is drawn based on the assumption
that observer N is the leading observer at time step k
and it is updated at time step k − k3. Suppose the sen-
sor fault starts between time step k − k3 and k. Theorem1
inMo and Sinopoli (2010) indicates that ‖e(k − k3 − (N −
i)κ�,g)‖ < ε,∀N, where ε is a small positive number and
it is related to system noise and initial estimation error.
Therefore, the fault signal could increase the averaged
residual generated bymultiple open-loop observers, thus
detected by the MOLO method. If the slope of the ramp
fault signal is arbitrarily small, then the fault signal can still
bypass the MOLOmethod.

Remark: The fault signal could be designed to make
�N

i=1Ff (k − (N − i)k�,g) = 0 in order to bypass the multi-
ple open-loop observers. That means, however, the fault
signal is changing around zero every κ�,g time steps. If the
change is small, then the impact of the fault is insignif-
icant. If the change is large, then the fault signal can
cause a significant change in the residual generated by
a closed-loop observer.

Although this approach cannot guarantee the detec-
tion of a sensor fault with arbitrarily small slope, a sensor
fault with a small slope would take a long time to disrupt
the performance of the system. In addition, if the sensor
fault is caused by a cyber attack, this long time increases
the cost of the attack implementation. During this time,
other techniques, such as sensor fusion,may have already
detected the sensor fault.

Algorithm 3 shows the procedure of the MOLO
method. At each time step, we first find the leading
observer. Then we average the residuals for each group.
The averaged residual is analysed to determine the occur-
rence of a critical sensor fault, and isolate the faulty sen-
sor. After the faulty sensor is detected, if the system
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Algorithm 3: MOLOmethod for critical sensor FDI
function MOLO;
Input : y(k), u(k), x̃0(k), IF,g(k − 1), x̂g,i
Output: IF, IF,g(k), if , x̂g,i(k + 1)
for g = 1 to M do

Hg = �
k−κf ,g
 k

κf ,g
�

κ�,g
 + 1;

if Hg > N then
Hg = 1;

end
for i = 1 to N do

if time to update x̂g,i then
x̂g,i(k) =
(1 − IF,g(k − 1))x̃0(k)+ IF,g(k − 1)x̂g,i(k);
x̂g,i(k + 1) = Ax̂g,i(k)+ Bu(k);

else
x̂g,i(k + 1) = Ax̂g,i(k)+ Bu(k);

end
//Residuals generation;
rg,i(k) = y(k)− Cx̂g,i(k)

end
//Averaged residual;
if k ≤ κf ,g then

ravg,g(k) = 1
N�

N
i=1rg,i(k);

else

ravg,g(k) = 1
N (�

Hg
i=1rg,i(k − (Hg − i)κ�,g)+

�N
i=Hg+1rg,i(k − κf ,g + (i − Hg)κ�,g));

end
end
//Fault detection and isolation;
tmp = 0; //The number of groups that
trigger fault alarms;
tmpsensor,j = 0; //The sensor that each
group thinks it is faulty;
for g = 1 to M do

for j = 1 to n do
if {ravg,g(k)}j ≥ {θMOLO,g}j then

IF,g(k) = 1;
g′ = g;
tmp = tmp + 1;
tmpsensor,j = tmpsensor,j + 1;

end
end

end

if 1
g′�

g′
g=1IF,g(k) ≥ θf then

IF = 1;
if = maxj tmpsensor,j;

end

is stable or marginally stable with ‖A‖ = 1, then we
can directly use the state estimated by an open-loop

observer for the state feedback controller as indicated in
Proposition 4.9. Otherwise, we need to replace the faulty
sensor.

Figure 10 shows the performance of the MOLO
method under fault β . In this example, we have two
groups of open-loop observers. Group 1 has update
period 8 s and group 2 has update period 2 s. There are 20
observers in each group and the update time steps are
distributed evenly within one update period. Figure 10(a)
shows the averaged residuals and Figure 10(b) shows
the fault alarms of the two groups. After the first update
period, the averaged residual is less noisy and the thresh-
old of each group could be smaller. It can also be seen
that the fault is successfully detected by Group 1 at
about 27 s but bypasses Group 2. This is because the
update period of Group 2 is too short compared to
the slope of the fault signal. Overall, fault β is suc-
cessfully detected by the MOLO method compared to
Figure 6.

4.5. CCImethod for non-critical sensor fault
mitigation

The CCI method can potentially mitigate the impact of
a fault on a non-critical sensor during the FDI process.
At each time step, this method selects the closed-loop
observer, based on which the state feedback controller
gives the smallest divergence of the control input. This
divergence is defined as follows:

Definition 4.12 (Divergence of the control input): Di-
vergence of the control input ‖�ui‖ is the absolute differ-
ence between the CCI based on the closed-loop observer
and that based on an open-loop observer.

‖�ui(k)‖ = ‖Kx̃i(k)− Kx̂(k)‖. (38)

The open-loop observer in the CCI method is slightly
different from those used in the MOLO method. Since
the CCI method switches among several closed-loop
observers from time-to-time, the state of the open-loop
observer should be updated to be the estimated state by
the closed-loop observer which is used for feedback at
time step k. For example, if closed-loop observer i is used
for feedback at time step k, then we need to calculate the
estimated state x̂(k + 1) of the open-loop observer with
the initial state x̃i(k).

First, we analyze this method in ideal system, and
give the lower bound of the fault signal that the CCI
method can switch to the observer without the faulty
sensor during the FDI process. Then, we analyze the
impact of system noise on the lower bound of the fault
signal.
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86 Z. WANG ET AL.

Figure 10. (a) The averaged residuals of the two groups of observers: Group 1 has update period 8 s and Group 2 has update period 2 s;
(b) fault alarms of the two groups IF,1 and IF,2.

4.5.1. Ideal system case
Under normal operation, the divergence of the con-
trol input calculated based on a closed-loop observer
is a function of its estimation error. Under sensor fault,
the closed-loop observer without faulty sensor gives
the best state estimation, thus the smallest divergence.
Theorem 4.13 demonstrates that the divergence of the
control input ‖�uif (k + 1)‖ based on the closed-loop
observer if without the faulty sensor if is smaller than
that based on other closed-loop observers with the faulty
sensor.

Theorem 4.13: Given an ideal control system (1) with
w(k) = 0 and v(k) = 0, and a sensor fault starting at time
step k on sensor if , observer if gives the smallest divergence
of the control input ‖�uif (k + 1)‖ if the lower bound of
the fault signal satisfies Equation (39).

∀i = 0, 1, . . . ,mo, i �= if

‖f (k)‖ ≥ ‖KLiFi‖−1[‖KLif Cif eif (k)‖ + ‖KLiCiei(k)‖
+ ‖KAeif ,i(k)‖]. (39)

Proof: With faulty sensor if starting at time step k,
observer if is not affected by the faulty sensor. The esti-
mated state x̃i(k + 1) of observer i (i �= if ) containing the
faulty sensor and the estimated state x̃if (k + 1) observer
if are

x̃i(k + 1) = Eix̃i(k)+ Li(Cix(k)+ Fif (k))+ Bu(k),

x̃if (k + 1) = Eif x̃if (k)+ Lif Cif x(k)+ Bu(k). (40)

Since the initial state of the open-loop observer is the
same as the estimated state of the observer which is
used for feedback at time step k, two cases should be
considered:

(1) At time step k, observer i (i �= if ) is used for feed-
back,

x̂(k + 1) = Ax̃i(k)+ Bu(k). (41)

(2) At time step k, observer if is used for feedback,

x̂(k + 1) = Ax̃if (k)+ Bu(k). (42)

Under case (1), the divergence of the control input of
observer if and observer i (i �= if ) are shown in Equations
(43) and (44), respectively.

‖�uif (k + 1)‖ = ‖KAeif ,i(k)+ KLif Cif eif (k)‖, (43)

‖�ui(k + 1)‖ = ‖KLiCiei(k)+ KLiFif (k)‖. (44)

So when the lower bound of the fault signal satisfies
Equation (39), observer if gives the smallest divergence of
the control input, and is selected to provide feedback for
the state feedback controller at time step k+1. The same
result is also drawn for case (2). �

Based on Theorem 4.13, when the system is under
non-critical sensor fault and the fault signal satisfies
Equation (39), the CCI method can switch to the observer
without the faulty sensor before the faulty sensor is iden-
tified. If the magnitude or the slope of the fault signal
is too small, then theCCImethodmaynotbeable to select
the observer without the faulty sensor to mitigate the
impact of sensor fault; and the lower bound of the fault
signal during the observers’ transient state is larger than
that during steady state because of the relatively large
estimation error. In order to reduce the lower bound of
the fault signal, horizon size κCCI is introduced to calculate
thedivergenceof the control input to consider the impact
of the integral of the fault signal overκCCI steps. Therefore,
at each time step k, we need to recalculate the state of
the open-loop observer with initial state same as the esti-
mated state x̃i(k + 1 − κCCI) of the selected closed-loop
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observer at time step k + 1 − κCCI. Then, the divergence
of the control input of observer if and i are

‖�uif (k + 1)‖ = ‖K(−(Eif )κCCI eif (k + 1 − κCCI)

+ AκCCI eif (k + 1 − κCCI))‖, (45)

‖�ui(k + 1)‖ = ‖K(−(Ei)κCCI ei(k + 1 − κCCI)

−�
κCCI−1
j=0 (Ei)

jLiFif (k − j)

+ AκCCI eif (k + 1 − κCCI))‖, (46)

Thus, the lower bound of the integral of the fault signal is

‖�κCCI−1
j=0 K(Ei)

jLiFif (k − j)‖
≥ 2‖KAκCCI eif (k + 1 − κCCI)‖

+ ‖K(Eif )κCCI eif (k + 1 − κCCI)‖
+ ‖K(Ei)κCCI ei(k + 1 − κCCI)‖. (47)

If the fault starts between time steps k + 1 − κCCI and
k, eif (k + 1 − κCCI) and ei(k + 1 − κCCI) are very small.
In addition, the absolute value of the eigenvalues of
Eif and Ei are smaller than 1. Increasing the horizon
step κCCI and placing the observer poles closer to the
origin can reduce both ‖K(Eif )κCCI eif (k + 1 − κCCI)‖ and
‖K(Ei)κCCI ei(k + 1 − κCCI)‖. For the term ‖KAκCCI eif (k +
1 − κCCI)‖, however, we need to consider three condi-
tions: A is stable, marginally stable and unstable. If the
open-loop system is stable or marginally stable, i.e. the
eigenvalues of A lie inside or on the unit circle, the
term ‖KAκCCI eif (k + 1 − κCCI)‖ is bounded. Thus, increas-
ing κCCI can reduce the lower bound of the fault signal
and increase the ability of the CCI method to select the
observer without the faulty sensor. If the open-loop sys-
tem is unstable, i.e. the one or more eigenvalues of A lie
inside the unit circle, the term ‖KAκCCI eif (k + 1 − κCCI)‖ is
diverging, which reduces the ability of the CCI method.
Therefore, the selection of the optimal horizon step κCCI
depends on the property of the physical system.

4.5.2. Noisy system case
With system noise, the lower bound of the fault signal is
increased as shown in Lemma 4.14 (the horizon step κCCI
is not considered in Lemma 4.14).

Lemma 4.14: Givena control system (1),anda sensor fault
startingat timestepkonsensor if ,observer if gives the small-
est divergence of the control input if the lower bound of the
fault signal satisfies Equation (48).

∀i = 0, 1, . . . ,mo, i �= if

‖f (k)‖ ≥ ‖KLiFi‖−1(‖KLif Cif eif (k)‖ + ‖KLiCiei(k)‖
+ ‖KAeif ,i(k)‖ + ‖KLif ‖υif + ‖KLi‖υi). (48)

The proof is similar to Theorem 4.13.
The transient dynamics caused by switching among

observers may degrade the performance of the control
system (Liberzon and Morse, 1999). To avoid frequently
switching, a threshold θCCI is used to decide when to
enable or disable the switching. θCCI should be selected
to balance the frequency of switching and the ability to
mitigate the impact of the sensor fault.

Algorithm 4 gives the procedure of the CCImethod. At
each time step, the CCI method calculates the estimated
state of an open-loop observer with the initial state the
same as the selected observer at time step k + 1 − κCCI.
Then it switches to the observer which gives the small-
est divergence of the control input if the switching is
enabled.

Figure11 shows the systemwith theCCImethodunder
sensor fault α. The maximum absolute value of position
under sensor fault is 4 cm, which is smaller than that with
the COmethod as shown in Figure 5(a). During the detec-
tion delay (2 s), the CCI method has already switched to
observer 1 for state estimation at 13 s, thusmitigating the
impact of the sensor fault.

4.6. Integration of CO, CR, MOLO and CCImethods

In this section, the three new methods, CR, MOLO, and
CCI methods are introduced and compared with the

Algorithm4: CCI method for non-critical sensor fault
mitigation
function CCI;
Input : k, x̃i(k + 1), x̃i(k + 1 − κCCI) (i = 0, . . . ,mo),

IFB(k + 1 − κCCI)

Output: IFB(k + 1)
//Open-loop observer state
estimation;
if k > κCCI then

x̂(k + 1) = AκCCI x̃IFB(k+1−κCCI)(k + 1 − κCCI)+
�
κCCI−1
j=0 AjBu(k − j)

else
x̂(k + 1) = Ak+1x̃0(0)+�k

j=0A
jBu(k − j)

end
//Control input calculation;
uo(k + 1) = Kx̂(k + 1);
ui(k + 1) = Kx̃i(k + 1);
‖�ui(k + 1)‖ = ‖ui(k + 1)− uo(k + 1)‖;
if ‖�ui(k + 1)‖ ≥ θCCI for all i then

IFB(k + 1) = mini ‖�ui(k + 1)‖;
else

IFB(k + 1) = IFB(k);
end
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Figure 11. (a) Estimated states of both observers x̃0, x̃1, real state x, and sensor measurement y of the system; (b) Selected observer
index IFB with the CCI method during time 10 s and 20 s.

CO method through simulation to show the
improvements.

• The CR method enables fault detection during the
observers’ transient state, and no false alarms gener-
ated compared to COmethod;

• The MOLO method successfully detects the critical
sensor fault, while COmethod fails;

• The CCI method switches to the observer without the
faulty sensor during the FDI process, and the position
of the object during sensor fault is reduced to 0.04m
compared to 0.3m with COmethod.

We systematically integrate all of the above methods
to utilize their advantages, improving the overall perfor-
mance of FDI and fault mitigation. Algorithm 5 shows the
integration of the CO, CR, MOLO, and CCI methods. At
each time step, the CCI method is used to mitigate the
impact of a potential sensor fault. Then the CR method
determines whether there is a faulty sensor on the sys-
tem. If the CR method flags an alarm, and if the system
observers have reached their steady state under normal
operation (k > kss, where kss is the number of time steps
that is needed for observers to reach their steady state),
the CO method is used to isolate the faulty sensor, and
the system switches to the observer that can mitigate
the impact of the sensor fault after the faulty sensor is
isolated. Meanwhile, the MOLO method detects whether
there is a fault on a critical sensor. Robust control design
in the presence of a disturbance is not within the scope of
this paper.

5. Illustrative example

A simplified suspension system (a two-mass-two-spring
system) (Control Tutorial for Matlab & Simulink) is used to
test the proposed algorithm with four methods. The

Algorithm 5: Integration of four methods

for k = 0 to the end of simulation do
//Estimated state of closed-loop
observers;
x̃i(k + 1) = Eix̃i(k)+ Liyi(k)+ Bu(k);
//FDI and Mitigation begins;
IFB(k + 1) = CCI(k, x̃i(k + 1), x̃i(k + 1 −
κCCI), IFB(k + 1 − κCCI));
u(k + 1) = Kx̃IFB(k+1)(k + 1);
[IA, IF, ID, d̃(k − 1)] = CR(x̃i(k − kCR : k + 1));
if ID = 0 and k ≥ kss then

[IF, IF,g(k), if , x̂g,i(k + 1)] =
MOLO(y(k), u(k), x̃0(k), IF,g(k − 1), x̂g,i);

end
if IF = 1 and k ≥ kss then

[IF, if ] = CO(y(k), x̃i);
IFB(k + 1) = if ;
u(k + 1) = Kx̃IFB(k+1);

else if IF,g = 1 for any g then
if A is stable or (A is marginally stable and
‖A‖ ≤ 1) then

u(k + 1) = −Kx̂g,1(k + 1);
else

Replace the faulty sensor if
end

else
Robust control to tolerate disturbance

end
end

system shown in Figure 12 has five states: position h1 of
mass 1, velocity ḣ1 of mass 1, distance between twomass
h, velocity ḣ, and integral of h, which is used to achieve
zero steady-state error. The five states are measured by
five sensors directly, as shown in Table 2. A controller con-
trols the system through u. Potential disturbance comes
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Figure 12. Simplified suspension system.

Table 2. Sensors of the simplified suspension system.

Variable Set

Sensor 1 h1 Snc
Sensor 2 ḣ1 Snc
Sensor 3 h Snc
Sensor 4 ḣ Snc
Sensor 5 �h Sc

from the ground. We want to maintain h to stay at 0m,
which is also the reference signal of this system.

The system has sampling time 0.01 s, process noise
bound0.001 (morm/s) and sensor noisebound0.01 (mor
m/s). The observers’ transient state is about 0.1 s (10 time
steps). The initial state of the system is (0, 0, 0, 0, 0). The
initial state of the observers is (0.02, 0.01, 1, 0, 0). Table 3
shows part of parameters of the four methods.

Four scenarios are considered as examples:

• Scenario 1: A ramp fault signal with slope 1m/s (0.01m
per time step) added to sensor 3, saturating at 10m;

• Scenario 2: A ramp fault signal with slope 1m/s (0.01m
per time step) added to sensor 3, saturating at 10m;

• Scenario 3: A ramp fault signal with slope 0.01m/s
(0.0001m per time step)added to sensor 5, saturating
at 10m;

• Scenario 4: A step disturbance from the ground with
magnitude 0.2m, starting at t = 30 s.

The faults in Scenario 1 and 3 start at t = 30 s. The fault in
Scenario 2 starts at t = 0.05 s.

Table 3. Part of parameters of the four methods.

CO θCO 0.012

CR κCR 0.1 s (10 time steps)
θCR 0.9

MOLO M 2
N 20
kf ,1 10 s (1000 time steps)
kf ,2 0.4 s (40 time steps)

{θMOLO,1}5 0.025m
{θMOLO,2}5 0.015m

CCI κCCI 10 s (1000 time steps)
θCCI 0.001 N

Figure 13 shows the system under a non-critical sen-
sor fault happening during the steady state of the sys-
tem. During the observers’ transient state, the CRmethod
eliminates false alarms as shown in Figure 13(b). At the
time the sensor fault occurs, the CCI method switches to
observer 3 for feedback as shown in Figure 13(c), allow-
ing more time for FDI. The CR method triggers an alarm
after detecting the sensor fault. The CO method isolates
the faulty sensor, and calculates the fault signal as shown
in Figure 13(d). The proposed algorithm integrating the
four methods successfully protects the system from a
non-critical sensor fault happening during the observers’
steady state.

Figure 14 shows the system under a non-critical sen-
sor fault happening during the observers’ transient state.
The CR method successfully detects the occurrence of
the sensor fault with about 0.06 s time delay as shown
in Figure 14(b), which is caused by relatively large θCR
(0.9) compared to the observer poles (about 0.1). The CCI
method switches to the observer without the faulty sen-
sor later than the time step that CR method detects the
sensor fault. This is because the observers cannot pro-
vide good state estimations during the observers’ tran-
sient state, thus the observer without the faulty sensor
may not give the smallest divergence of the CCI. This sce-
nario shows the effectiveness of the CR method for fault
detection during the observers’ transient state.

Figure 15 shows the system is subject to a critical sen-
sor fault. In Figure 15(b), the averaged residuals are less
noisy after the first update period. Group 1 successfully
detects the occurrence of the sensor fault, while group
2 does not. This scenario shows the effectiveness of the
MOLOmethod for a non-critical sensor FDI.

Figure 16 shows the system under disturbance from
the ground. The CR method successfully distinguishes a
disturbance from a sensor fault, and correctly estimates
the disturbance signal.

6. Conclusions and future work

In this paper, the CO method and three new methods,
the CR, MOLO, and CCI methods, are integrated to solve
the FDI and mitigation problem using multiple closed-
loop andopen-loopobservers. The closed-loopobservers
include one that uses all of the sensor measurements for
state estimation, and others that exclude a non-critical
sensor. Basedon the twodifferent typesof observers, new
methods are proposed and integrated to solve various
problems:

• the CR method can detect non-critical sensor faults
during the observers’ transient state;
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Figure 13. Scenario 1: (a) the estimated states of observer 0 and observer 3 x̃0, x̃3, the real state x, and the sensor measurement y of
the system under the non-critical sensor fault; (b) fault alarms IF; (c) Observer index IFB selected for the state feedback controller; and (d)
estimated fault signal f̃ and the real fault signal f.

Figure 14. Scenario 2: (a) the estimated states of observer 0 and observer 3 x̃0, x̃3, the real state x, and the sensor measurement y of the
system under the non-critical sensor fault; (b) fault alarms IF; and (c) observer index IFB selected for the state feedback controller.
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Figure 15. Scenario 3: (a) the estimated states of closed-loop observer 0 and the open-loop observer (1,1), x̃0, x̂1,1 the real state x, and
the sensor measurement y of the system; (b) averaged residuals of both groups of open-loop observers ravg,1, ravg,2.

Figure 16. Scenario 4: The calculated disturbance d̃ and the real
disturbance d of the system.

• the MOLO method can detect and isolate critical sen-
sor faults; and

• the CCImethod canmitigate the impact of non-critical
sensor faults during the FDI process.

The CR method uses the CRs of the observers’ estima-
tion errors to determine whether or not there is a non-
critical sensor fault. The CRs of the observers’ estimation
errors are not affected by the uncertain initial condition.
Therefore, the CR method can reduce false alarms dur-
ing the observers’ transient state. To achieve robust FDI,
bias analysis is used to distinguish a sensor fault from a
disturbance.

The MOLO method utilizes a bank of open-loop
observers, which do not use sensor measurements for
state estimation, to detect and isolate critical sensor
faults. The state of the open-loop observers are updated
periodically by the closed-loop observer which uses
all of the sensor measurements. Because of the trade-
off between estimation performance and the ability
to detect a sensor fault, the open-loop observers are
divided into several groups. In the same group, the open-
loop observers are updated with the same update fre-
quency, but the time steps to update them are evenly
distributed in oneupdate period. The residuals generated

by observers in the same group are averaged. Then the
averaged residuals of different groups are analysed to
determine the occurrence of a sensor fault and to locate
the faulty sensor.

The CCI method switches among different closed-
loop observers to potentially mitigate the impact of non-
critical sensor faults during the FDI process. This method
selects the closed-loop observer which gives the smallest
divergenceof the control input, for state estimation at the
next time step.

The three new methods are integrated with a previ-
ously developed residual-based method (CO method) to
collaboratively address the FDI andmitigation problem in
this paper. The collaboration of themethods is illustrated
in Figure 2(a) and Table 1. The proposed algorithm allows
any residual-based method to be integrated besides the
CO method. Simulation results show the effectiveness of
our proposed framework.

This multi-observer approach can be easily extended
to the multiple sensor faults case as long as the system
observability still holds without the faulty sensors. How-
ever, at a high level, the framework we propose has some
limitations. There is not currently a method to detect a
critical sensor fault during the observers’ transient state.
Also, no method can potentially mitigate the impact of a
critical sensor fault.

Other limitations of the framework proposed herein
include an inability todetect a rampsensor faultwith arbi-
trary slope, and the requirement of a lower bound on the
magnitude of the fault signal for detection. In some cases,
our framework cannot distinguish a sensor fault from sen-
sor noise in some cases. Addressing this issue is a topic of
future work. Sensor fusion, statistic analysis, andmachine
learningmethods are potential solutions to this problem.

Each of the methods we propose presents opportuni-
ties for future work. The CR method is very sensitive to
sensor noise for fault detection. The threshold θCR, which
is used to compare with the CR, is selected to be much
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larger than the observer poles to reduce false alarms dur-
ing the observers’ steady state. Therefore, the CRmethod
cannot detect the sensor faults that make the CR smaller
or slightly larger than the observer poles. If we can make
the CR method robust to sensor noise, upper and lower
bounds for the CRs can be set to address more sensor
faults. The bias analysis of the CR method is also sensi-
tive to system noise. Our future work could use several
robust observers for the CR method, which requires that
we decouple estimation errors based on the estimated
states of the observers.

The MOLO method, used for critical sensor FDI, does
not work for open-loop unstable systems. Techniques
such as sensor fusion could be exploited to protect unsta-
ble systems from critical sensor faults.

The CCI method does not perform well if the sen-
sor fault occurs during the observers’ transient state, as
shown in the suspension system example in Section 5,
because of the relatively large estimation error. This issue
could be potentially addressed by combining the CR
method and the CCI method together because the
CR method can decouple the estimation errors of the
observers. Finally, the optimal horizon step, which could
reduce the lower bound of the fault signal, is unknown.
A cost function should be proposed to determine the
optimal horizon step in the future.

It may be impossible in general to detect every kind
of sensor fault. The aim of our sensor FDI and mitigation
method is to decrease the lower bound of sensor fault
that can be detected, and to allow more time for other
techniques to protect the system before it runs into some
severe condition.

Notes

1. The reason we use the Luenberger observers (or Kalman fil-
ters) is thatwe candecouple observers’ estimation errors for
the CR method.

2. Qi should be designed to make the element {yi(k)−
Cix̃i(k)}j(j ∈ Snc), where j corresponds to the critical sensors,
have larger weighting ratios than the element correspond-
ing to non-critical sensors.

3. The demonstration is shown in Theorem A.1.
4. The initial estimation errors of the observers are large

to help us understand the limitations of a residual-based
method using closed-loop observers during the observers’
transient state.
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Appendix

A.1 Proof of COmethod

Theorem A.1: Given an ideal control system (1) with w(k) = 0
and v(k) = 0, when sensor if is faulty at time step k, the observer if
gives the smallest norm estimation error if the fault signal satisfies

‖f (k)‖ > ‖LiFi‖−1(‖Eif eif (k)‖ + ‖Eiei(k)‖), i �= if . (A1)

Proof: When sensor if is faulty, Fif = 0(m−1)×1. Then the estima-
tion error of observer if is

eif (k + 1) = x(k + 1)− x̃if (k + 1) = Eif eif (k). (A2)

In contrast, the estimation error of observer i (i �= if ) is

ei(k + 1) = x(k + 1)− x̃i(k + 1) = Eiei(k)− LiFif (k). (A3)

Therefore, if Equation (A1) holds, the following is true

‖eif (k + 1)‖ < ‖ei(k + 1)‖ ∀i = 0, 1 . . . ,mo ∧ i �= if (A4)

�

Remark A.2: There is no physical meaning for ‖f (k)‖.
TheoremA.1 gives a lower bound of f (k) that the residual-based
detection method could be used to select observer if , which is
the one without the faulty sensor if .

A.2 Proof of Theorem 4.4

Theorem 4.4: Given an ideal control system (1) with w(k) = 0
and v(k) = 0, the biases d̃μ(ν)(k) and d̃�,μ(ν)(k) are calculated
according to Equations (21) and (22), respectively, with the follow-
ing results:

(1) When the system is under disturbance,

∀μ, ν = 0, 1, . . . ,mo ∧ μ �= ν,

d̃μ(ν)(k) = d̃�,μ(ν)(k) = d(k).

(2) When the system is under sensor fault,

∀μ, ν = 0, 1, . . . ,mo ∧ μ �= ν,

d̃μ(ν)(k) = d̃ν(μ)(k),

d̃�,μ(ν)(k) �= d̃�,ν(μ)(k) if Vμ �= Vν . (A5)

d̃μ(ν)(k) = (DTD)−1DT[ẽμ(ν)(k + 1)− Eμẽμ(ν)(k)],

d̃�,μ(ν)(k) = ((D�,μ)
TD�,μ)

−1(D�,μ)
T

[ẽ�,μ(ν)(k + 1)− E�,μẽ�,μ(ν)(k)], (A6)

where D�,μ = (Vμ)−1D, and E�,μ = (Vμ)−1EμVμ.

Proof: (1) According to Lemma 4.1, ẽμ(ν) = eμ if a disturbance
exists. By substituting Equation (10) into Equation (21), the cal-
culated bias becomes

d̃μ(ν)(k) = (DTD)−1DT[Eμeμ(k)+ Dd(k)− Eμeμ(k)] = d(k).
(A7)

Similarly,

d̃�,μ(ν)(k) = ((D�,μ,)
TD�,μ)

−1(D�,μ)
T(Vμ)

−1[Eμeμ(k)

+ Dd(k)− Eμeμ(k)]

= d(k). (A8)
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(2) Under sensor fault, the estimation error cannot be cor-
rectly calculated. Therefore, ẽμ(ν) in Equation (17) and eμ in
Equation (12) are substituted to Equation (21) to calculate the
difference between two biases based on two observers,

d̃μ(ν)(k)− d̃ν(μ)(k) = (DTD)−1DT[eμ(k + 1)− Eμe
μ(k)

+ Eμ(Eν − Eμ)
−1(LνFν − LμFμ)f (k)

− eν(k + 1)+ Eνeν(k)

− Eν(Eν − Eμ)
−1(LνFν − LμFμ)f (k)]

= 0. (A9)

When the biases are calculated based on Equation (22), then

d̃�,μ(ν)(k) = ((D�,μ)
TD�,μ)

−1(D�,μ)
T(Vμ)

−1[ẽμ(ν)(k + 1)

− Eμẽμ(ν)(k)] (A10)

d̃�,ν(μ)(k) = ((D�,ν)
TD�,ν)

−1(D�,ν)
T(Vν)

−1[ẽν(μ)(k + 1)

− Eν ẽν(μ)(k)] (A11)

are obtained for observer μ and ν, respectively. Based on
Equation (A9), the following is true:

ẽμ(ν)(k + 1)− Eμẽμ(ν)(k) = ẽν(μ)(k + 1)− Eν ẽν(μ)(k). (A12)

So if Vμ �= Vν , then ((D�,μ)TD�,μ)−1(D�,μ)T(Vμ)−1

�= ((D�,ν)TD�,ν)−1(D�,ν)T(Vν)−1. Thus d̃�,μ(ν)(k) �= d̃�,ν(μ)(k).
�

A.3 Proof of Lemma 4.6

Lemma 4.6: Given a control system (1) with bounded sensor
noise and w(k) = 0, ‖ẽμ(ν)(k)− eμ(k)‖ is bounded by ‖(Eν −
Eμ)−1‖(‖Lν‖ + ‖Lμ‖)υ .

Proof: When sensor noise exists in the system, the estimation
error evolution becomes

eμ(k + 1) = Eμeμ(k)− Lμvμ(k). (A13)

Then, the difference of the estimated states between two
observers μ and ν becomes

eμ,ν(k + 1) = Eνeν(k)− Eμeμ(k)− Lνvν(k)+ Lμvμ(k). (A14)

Therefore, the calculated estimation error becomes

ẽμ(ν)(k) = eμ(k)− (Eν − Eμ)
−1(Lνvν(k)− Lμvμ(k)). (A15)

So, ‖ẽμ(ν)(k)− eμ(k)‖ is bounded by ‖(Eν − Eμ)−1‖(‖Lν‖ +
‖Lμ‖)υ . �

A.4 Proof of Lemma 4.7

Lemma 4.7: Given a control system (1) with bounded pro-
cess noise and v(k) = 0, ‖d̃�,μ(ν)(k)− d(k)‖ is bounded by
||((D�,μ)TD�,μ)−1(D�,μ)T (Vμ)−1||ω.

Proof: Estimation error can still be correctly calculated when
the system is subject to process noise as proved in Lemma 5.

Then the bias calculated based on Equation (22) becomes

d̃�,μ(ν)(k) = d(k)+ ((D�,μ)
TD�,μ)

−1(D�,μ)
T(Vμ)

−1w(k).
(A16)

Therefore, ‖d̃�,μ(ν)(k)− d(k)‖ is bounded by ‖((D�,μ)TD�,μ)−1

(D�,μ)T(Vμ)−1‖ω. �

A.5 Proof of Lemma 4.8

Lemma 4.8: Given a control system (1) with bounded sensor
noise and w(k) = 0, ‖d̃�,μ(ν)(k)− d(k)‖ is bounded by
||((D�,μ)TD�,μ)−1(D�,μ)T (Vμ)−1||(1 + ||Eμ||)||(Eν − Eμ)−1||
(||Lν || + ||Lμ||)υ .

Proof: When the system has sensor noise, by substituting
Equation (A15) into Equation (22),

d̃�,μ(ν)(k) = d(k)− ((D�,μ)
TD�,μ)

−1(D�,μ)
T(Vμ)

−1

[(Eν − Eμ)
−1(Lνvν(k + 1)− Lμvμ(k + 1))

− Eμ(Eν − Eμ)
−1(Lνvν(k)− Lμvμ(k))]. (A17)

Therefore, ‖d̃�,μ(ν)(k)− d(k)‖ is bounded by ‖((D�,μ)TD�,μ)−1

(D�,μ)T(Vμ)−1‖(1 + ‖Eμ‖)‖(Eν − Eμ)−1‖(‖Lν‖ + ‖Lμ‖)υ . �

A.6 Proof of Proposition 4.9

Proposition 4.9: Given a control system (1), and an open-loop
observer (3) the following results can be drawn:

(1) If all of the eigenvalues of A lie inside the unit circle, then the
estimation error of an open-loop observer is bounded;

(2) If one or more of the eigenvalues of A lie on the unit cir-
cle and ‖A‖ = 1, then the estimation error of an open-loop
observer is bounded.

Proof: The real state of the system is

x(k) = Akx(0)+�k−1
i=0 A

iBu(k − 1 − i)+�k−1
i=0 A

iw(k − 1 − i).
(A18)

The state estimated by the open-loop observer is

x̂(k) = Akx̂(0)+�k−1
i=0 A

iBu(k − 1 − i). (A19)

Then, the estimation error of the open-loop observer is

eo(k) = Akeo(0)+�k−1
i=0 A

iw(k − 1 − i). (A20)

(1) If all of the eigenvalues of A lie inside the unit circle, then
Akeo(0) is converging and according to Lambers (2009)

lim
i→∞

{Ai}j1,j2 = 0 j1, j2 = 1, . . . , n. (A21)

Let {Ā}j1,j2 = max({Ai}j1,j2), where i = 0, 1, . . . , k − 1 and
Ā is formed by {Ā}j1,j2 . Then,
�k−1

i=0 A
iw(k − 1 − i) ≤ Ā�k−1

i=0 w(k − 1 − i). (A22)

Since the random process noise w has zero-mean and
bound ω,�k−1

i=0 A
iw(k − 1 − i) is bounded as well.

(2) If oneormoreof the eigenvalues ofA lie on theunit circle,
then Akeo(0) is bounded. The other term �k−1

i=0 A
iw(k −

1 − i) is a linear combination of the random vector
Aiw(k − 1 − i). For a vector Aw(k), each element is a
linear combination of zero-mean random variables in
vector w(k) with the elements in the same row of A as
coefficients

{Aw(k)}j = �n
i=1{A}j,i{w}j(k). (A23)

Since ‖A‖ = 1, i.e.,�n
i=1|{A}j,i| ≤ 1, Aw(k) is a zero-mean

random vector with boundω. Thus, Aiw(k − 1 − i) is also
a zero-mean random vector with bound ω. Therefore,
�k−1

i=0 A
iw(k − 1 − i) is bounded. �
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A.7 Proof of Proposition 4.10

Proposition 4.10: Given a control system (1), an open-loop
observer is updated every κf ,g time steps. The impact of the system
noise on the averaged residual (A24) is mitigated.

ravg,g(k + (jN − 1)κf ,g) = 1
jN
�

jN
j=1rg(k + (jN − j)κf ,g), (A24)

where jN is a positive integer.

Proof: Since the process noise and sensor noise are zero-mean
vectors,

�∞
i=0w(i) = 0n×1,

�∞
i=0v(i) = 0m×1.

(A25)

The residual generated by a single open-loop observer over one
update period is

rg(k + (jN − j)κf ,g) = y(k + (jN − j)κf ,g)

− Cx̂g(k + (jN − j)κf ,g)

= Cx(k + (jN − j)κf ,g)+ v(k + (jN − j)κf ,g)

− Cx̂g(k + (jN − j)κf ,g)

= CAke((jN − j)κf ,g)+ v(k + (jN − j)κf ,g)

+�k−1
i=0 CA

iw(k − 1 + (jN − j)κf ,g − i).
(A26)

Then the averaged residual is

ravg,g(k + (jN − 1)κf ,g)

= 1
jN
�

jN
j=1rg(k + (jN − j)κf ,g)

= 1
jN
�

jN
j=1(CA

ke((jN − j)κf ,g)

+ v(k + (jN − j)κf ,g)

+�k−1
i=0 CA

iw(k − 1 + (jN − j)κf ,g − i)). (A27)

If jN → ∞, then

ravg,g(k + (jN − 1)κf ,g) = 1
jN
�

jN
j=1CA

ke((jN − j)κf ,g) (A28)

Therefore, the impact of system noise is mitigated. �
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A.8 Table of notations in the paper

Table A1. Notation

Matrices

A,B,C,D,K,F Systemmatrices, controller gain, and fault vector
Ci , Li , Fi , Ei Output matrix, observer gain, fault vector, state matrix for observer i, Ei = A − LiCi
Vi A collection of Eigenvectors of matrix Ei
E�,i , B�.i ,D�,i Transformed matrices for observer i

Variables
x,y,u,w,v,d,f System state, output, input, process noise, sensor noise, disturbance, and fault signal
ω,υ Bounds of the process noise and the sensor noise
mo Number of the non-critical sensors
n,m,p,s Dimensions of system state, output, input, and disturbance
Snc , Sc Sets of non-critical sensors and critical sensors
yi , vi Output and sensor noise for observer i
ei , eo Estimation error of closed-loop observer i and an open-loop observer
x̃i Estimated state by closed-loop observer i
x̂g,i Estimated state by open-loop observer i in group g
kss Time steps for a closed-loop observer to reach its steady state

Indicators, index
IA, IF, ID Alarms for anomaly, sensor fault, and disturbance
if Faulty sensor index
IFB Index of the closed-loop observer for feedback

CO Method
Qi Weighting matrix for observer i
θCO Threshold for the COmethod
ri The residual generated by closed-loop observer i
f̃ Calculated fault signal

CR Method
eμ,ν The difference of estimated states of two observers
ẽμ(ν) , ēμ(ν) Estimation error of observerμ calculated based on observersμ and ν and its upper bound
ẽ�,μ(ν) The calculated estimation error of observerμ after changing the coordinates
ẽμ Overall estimation error of observerμ, which is a function of ẽμ(ν) , ν = 0, 1, . . . ,mo ∧ ν �= μ

ẽ�,μ Overall estimation error of observerμ after changing the coordinates
{cri}j CR of the jth state estimation error of observer i
d̃μ(ν) The bias based on the calculated estimation error ẽμ(ν)
d̃�,μ(ν) , d̄μ(ν) The bias based on the calculated estimation error ẽ�,μ(ν) and its upper bound
κCR Time steps for the CR method
θCR Threshold to determine the occurrence of an anomaly
θd,μ(ν),ζ(η) Threshold to distinguish a sensor fault from a disturbance
φν Weighting ratio of calculated estimation error ẽμ(ν)
ψμ(ν) Weighting ratio of calculated bias d̃�,μ(ν)

MOLOMethod
M,N The number of open-loop observers groups and the number of open-loop observers in one group
κf ,g , κ�,g Update period, update interval between two adjacent open-loop observers for group g
rg,i Residual signal of observer i in group g
Hg , ravg,g Leading observer, averaged residual in group g
θMOLO,g Threshold for the MOLO

CCI Method
κCCI , θCCI Horizontal window, threshold for the CCI method
�ui Control input difference of closed-loop observer i

Others
{·}j The jth element of a vector, the jth row of a matrix, the jth diagonal element of a diagonal matrix
{·}j1,j2 The element at the j1th row and the j2th column of a matrix
|| · || The infinity norm || · ||∞
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